APPENDIX A

PG\&E Point Buchon Ocean Bottom Seismometer (OBS) Project, System Removal Biological Survey Report (September 8, 2015)

associates, inc.
ENGINEERS, GEOLOGISTS \& ENVIRONMENTAL SCIENTISTS
September 8, 2015
Project No. 1102-0621
PG\&E Geosciences Department
245 Market Street
San Francisco, California 94105
Attention: Ms. Marcia McLaren
Senior Seismologist
Subject: PG\&E Point Buchon Ocean Bottom Seismometer (OBS) Project, System Removal Biological Survey Report

Dear Ms. McLaren:
In accordance with the requirements of the California Coastal Commission (CCC) Coastal Development Permit (CDP) E-11-017 and conditions associated with the California State Lands Commission (CSLC)-issued lease PRC 8985.1, Padre Associates, Inc. (Padre) is pleased to submit this report for the subject Project for your subsequent submittal to the CCC and CSLC. This report summarizes the results of the post-removal biological survey of the ocean bottom seismometer (OBS) system.

INTRODUCTION

As part of Pacific Gas and Electric Company’s (PG\&E) seismic safety assessment at the Diablo Canyon Power Plant (DCPP), an OBS system was installed in the nearshore waters off Pt. Buchon, San Luis Obispo County (Attachment A - Figure 1). The system was comprised of two temporary OBS units and four long-term OBS units, and approximately 11.5 miles (mi) (18.5 kilometer [km]) of 2-inch (in) (5-centimeter [cm]) diameter cable that provided power to the longterm OBS units and transmitted data to and from the shore-based facility within DCPP. The original temporary OBS units were installed for 17 weeks and removed in November 2013. Initial installation of those units, the long-term units, and cable was completed from July 20 through July 27, 2013. Final adjustments to the system were made between November 6 and November 24, 2013, and PG\&E accepted the fully-adjusted system on November 24, 2013.

On February 19, 2014, the long-term OBS system experienced initial failures with the entire system becoming inoperable on April 1, 2014, necessitating the recovery of the long-term OBS system from the seafloor to better determine the causes for the system failure and to evaluate potential repair or replacement operations. To maintain earthquake monitoring four temporary OBS units were added on November 4, 2014. Recovery operations of the long-term OBS system and maintenance and redeployment of the four temporary OBS units were initiated on May 14, 2015 and were completed on May 22, 2015.

Following completion of the recovery operation, a seafloor biological survey was conducted on May 18, 2015 and May 27 through 29, 2015 to collect data on possible impacts associated with the presence and removal of the system and to confirm that no projectassociated debris remained on the seafloor. The survey area extended from the DCPP seawater intake embayment seaward along the cable route which was entirely within the State of California 3-mile jurisdictional line between Point Buchon (to the north) to the DCPP intake

September 8, 2015 (1102-0621)
embayment north of Point San Luis. Portions of the survey area were located within the Point Buchon Marine Protected Area.

Tenera Environmental (Tenera) was retained by PG\&E to complete a diver survey of the nearshore segment from the shallow subtidal water depths within the DCPP embayment to the 76 foot (ft) (23 meter [m]) isobath. Padre was retained to complete the deeper water segments of the cable corridor. The following discusses the results of the two surveys and provides the aforementioned assessment of project-associated impacts.

METHODS AND EQUIPMENT

The survey of the nearshore segment (between the offshore end of the cable conduit within the DCPP intake embayment and the $76 \mathrm{ft}[23 \mathrm{~m}]$) isobath was completed on May 18, 2015 by Tenera divers using SCUBA. Divers used a Garmin ETrex Legend GPS unit to collect latitude/longitude coordinates along the cable alignment. The unit was attached to a surface float with a tether line which was held taught to assure accurate location data. A Sony Handycam Model HDR-CX550V digital video camera inside a Light and Motion Bluefin 550 waterproof housing was used to document habitats and biota along the cable route.

The deeper water segment (greater than 76 ft) was completed by an remotely operated vehicle (ROV) survey over a three-day period (May 27 through 29, 2015) and utilized a Phantom 2+2 ROV, owned and operated by Aqueos Corporation under subcontract to Padre. The ROV was equipped with a scanning sonar and video cameras. The M/V Surveyor, a 100 ft [31m]-long, steel-hulled vessel owned and operated by Maritime Logistics, was the ROV support vessel. ROV and vessel positioning was provided by Fugro Pelagos, Inc. The ROV survey was initiated at the approximate termination point of the Tenera dive survey and progressed to the west and north (Attachment A, Figure 1).

Padre Marine biologist Ms. Jennifer Klaib monitored ROV images in real time while onboard the survey vessel. Additionally, video images collected during the two surveys were reviewed by Mr. Ray de Wit, Padre Senior Marine Scientist. The discussion and impact assessment provided below are based upon those reviews.

OBSERVATIONS

Nearshore

The nearshore surveyed was approximately $1,837 \mathrm{ft}$ (560 m -) long, from the $76 \mathrm{ft}(23 \mathrm{~m}$) isobath to where the cable entered the PVC conduit along the shoreline of the DCPP intake embayment (Attachment A - Figure 2). The results of that survey indicated that seafloor habitats within the survey area consisted of sand flat, most common immediately seaward of the intake embayment; a mixture of bedrock, boulder, cobble, gravel, sand, common with the intake embayment; and bedrock reefs and boulders where the cable approaches the intertidal revetment and comes onshore.

A tube-building worm (Diopatra sp.) is common within the sedimentary seafloor habitat within this segment; also present is the bat star (Patiria miniata). Mixed substrate (bedrock, boulder, cobble, gravel, sand) habitat supported several algal species, including the sea palm (Pterogophora californica), a brown strap kelp (Laminaria setchellii), and occasional giant kelp

September 8, 2015 (1102-0621)
(Macrocystis pyrifera). Epifauna associated with rocky substrate included at least two species of sea stars (Pisaster giganteus and P. ochraceas), and ornate tube worms (Diopatra ornata).

There were no indications of habitats or biota having been impacted from the cable removal within the nearshore area. The cable remained relatively close to the as-built route and there were no observations of overturned rocks, damaged kelp (other than kelp attached to the cable itself), or injured or dislodged invertebrates. No remnant "trail" of the cable (depressions within the sediment) was observed, however divers did note a "furrow" through the Diopatra beds in one area where the sand flat transitioned into the mixed substrate; video of this furrow was recorded. No cable-associated impacts within the mixed substrate of bedrock and boulders were observed and no project-associated debris was observed in this segment.

Offshore

The ROV survey was initiated at the $100 \mathrm{ft}(30 \mathrm{~m})$ isobath. Approximately 11 hours of video was recorded within this segment (depth range 100 to 345 ft [30 and 105 m]) (Attachment A - Figure 3). Based on navigational post-plots, approximately $925 \mathrm{ft}(282 \mathrm{~m}$) of the cable was not observed by diver or ROV surveys. The $925 \mathrm{ft}(282 \mathrm{~m})$ segment was between the inshore most point of the ROV survey and the offshore terminus of the Tenera diver survey. The segment was within sedimentary habitat, and no debris, rock or other high-relief objects were observed on the scanning sonar image screen.

100 FT ISOBATH TO LONG-TERM OBS-4 LOCATION. Seafloor habitats within this segment comprised both sedimentary (silty clay to sand) and solid (boulder fields and isolated low to moderate relief [1 to 8 ft - 0.3 to 2.4 m -] high) reefs. One to 6 in -(2.5 to $15 \mathrm{~cm}-$) high north-south oriented sand waves were present within the more coarse sediments.

The lower-relief rock habitat within this segment was covered with a thin veneer of sediment and was relatively depauperate of epibiota, although higher-relief features did support the plumose anemone (Metridium giganteus). Other rock-associated epibiota included solitary corals, gorgonian coral (i.e., Muricea sp.), and unidentified hydroids. Juvenile and adult rockfish were present, but not common, around those rock features. Common biota observed within the sedimentary habitats included the bat star (Patiria miniata) and two species of sea pen (Stylatula elongata and Acanthoptilum sp.). An unidentified burrowing anemone and a tube worm (Diopatra ornata) were also present within the sedimentary habitat.

No scraping or abrasion on the rock substrates, or depressions or trenching within the sedimentary substrates were observed within this segment. No project-associated debris was observed in this segment.

LONG-TERM OBS-4 LOCATION TO LONG-TERM OBS-3 LOCATION. Seafloor habitats within this segment were both sedimentary (silty clay) and solid, the latter comprising low to moderate relief (1 to 8 ft [0.3 to $2.4 \mathrm{~m}-$] high) reefs with boulders. No coarse sedimentary habitat or sand waves were observed within this segment.

Rock habitat supported an epibiota similar to that described above; however, rock substrate in water depths of 250 ft (76 m) or more supported the crinioid (Florometra sp .) Rockfish, including blue rockfish (Sebastes mystinus), which were present around the rock reefs within this segment, but were not common. Characteristic sediment-associated macroepibiota

September 8, 2015 (1102-0621)
included the two aforementioned sea pen species and the plumose sea pen (Ptilosarcus gurneyi). The multi-armed sunstar (Solaster sp.) and the grey tectrabranch (Pleurobranchus sp.) were present but not abundant.

No scraping or abrasion on the rock substrates, nor depressions, or trenching within the sedimentary substrates were observed within this segment. No project-associated debris was observed in this segment.

LONG-TERM OBS-3 LOCATION TO LONG-TERM OBS-2 LOCATION. Fine sediments characterize the seafloor habitat at the long-term OBS-2 location and along the 3.0 $\mathrm{mi}-(4.5 \mathrm{~km})$ long cable route between the two units; no rock habitat was observed within this area. Infauna and macroepibiota observed within this cable segment was similar to that discussed above, with sea pens (particularly Acanthoptilum sp. and Stylatula elongata) and unidentified octopi being most common. Fish observed on and around the sedimentary seafloor included both long and short-spine combfish (Zaniolepis latipinnis and Z. frenata, respectively), and unidentified flatfish.

No depressions, or trenching within the sedimentary substrates were observed in this segment, and no project-associated debris was observed in this segment.

LONG-TERM OBS-2 LOCATION TO LONG-TERM OBS-1 LOCATION. The seafloor at the long-term OBS-1 location and along 2.1 mi - (3.4 km) long corridor between the two units was sedimentary, comprising fine-grain sediments; no coarse-grain sediments or rock features were observed within this segment. The epibiota associated with the sedimentary habitat was similar to that discussed above; however, Dungeness crabs (Cancer magister) were more common here than in deeper water areas.

A depression at the long-term OBS-1 location was the only obvious seafloor alteration observed within this segment. That depression is estimated to be approximately six inches (in) (five centimeters [cm]) deep and approximately two feet (0.6 m) in diameter and had some shell hash. No other depressions, or trenching within the sedimentary substrates were observed in this segment, and no project-associated debris was observed within this segment.

ASSESSMENT OF IMPACTS

Based on the information provided in the video from the ROV survey and from that collected during Tenera's diver survey, the presence and removal of the OBS system appears to have resulted in no substantial impacts to either the seafloor habitats or biota over which the cable crossed. The four long-term OBS units, and approximately $11.5 \mathrm{mi}(18.5 \mathrm{~km})$ of cable were successfully removed and no project-associated debris was observed within the surveyed corridor.

A depression at the former long-term OBS-1 location and "furrow" through the Diopatra bed in the nearshore area were the only obvious seafloor alteration observed during both surveys. This depression and furrow is expected to "fill in" through natural sedimentation from the surrounding silty sediments and the area would be expected to support a fauna similar to that observed within these water depths within the project area. Other depressions in the deeper-water silty sedimentary substrate appear to be bioturbations (disturbances caused
biota). Neither scraping nor abrasion on the rock substrates or trenching within the sedimentary substrates was observed.

In summary, and based on the aforementioned data sources, no substantial OBS cableassociated negative effects to the seafloor habitats or associated biota were observed. The OBS-associated depression is not considered a significant impact and is expected to eventually fill with the natural sediments within the area and the "furrow" is expected to be a short-term feature and those sediments should be repopulated with epibiota similar to that of the surrounding area. If you should have any questions regarding the above information and/or require additional information, please contact me at (805) 786-2650, ext. 30 or Mr. Simon Poulter at (805) 683-1233, ext. 4.

Sincerely,
PADRE ASSOCIATES, INC.

Jennifer Klaib
Marine Biologist

Simon A. Poulter
Manager, Environmental Sciences Group

Attachments: Attachment A - Figures
c: Kris Vardas (PG\&E)
associates, inc.
ENGINEERS, GEOLOGISTS A

ATTACHMENT A

 FIGURESSeptember 8, 2015 (1102-0621)

Figure 1. Region and Site Seafloor Habitats with Installed OBS and Cable Locations

Figure 2. Diver Survey Location

