3.3 AIR QUALITY

AIR QUALITY – Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the Project:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant Impact with Mitigation</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Significant Impact</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

3.3.1 Environmental Setting

Regional Context

The Project site is located in Contra Costa County, which is part of the San Francisco Bay Area Air Basin (SFBAAB). The Bay Area Air Quality Management District (BAAQMD) is the regional agency with jurisdiction over the nine-county SFBAAB, which includes San Francisco, Alameda, Contra Costa, Marin, San Mateo, Santa Clara, and Napa counties, the southern portion of Sonoma County and the southwestern portion of Solano County.

The BAAQMD is responsible for attaining and maintaining air quality in the SFBAAB within federal and State air quality standards, as established by the federal Clean Air Act (CAA) and the California Clean Air Act (CCAA), respectively. Specifically, the BAAQMD has the responsibility to monitor ambient air pollutant levels throughout the SFBAAB and to develop and implement strategies to attain the applicable federal and State standards. The CAA and the CCAA require plans to be developed for areas that do not meet air quality standards, generally. The most recent air quality plan, the 2010 Clean Air Plan, was adopted by the BAAQMD on September 15, 2010 (BAAQMD 2010a). The 2010 Clean Air Plan updates the Bay Area 2005 Ozone Strategy in
accordance with the requirements of the CCAA to implement all feasible measures to reduce ozone; provide a control strategy to reduce ozone, particulate matter, air toxics, and greenhouse gases (GHGs) in a single, integrated plan; and establish emission-control measures to be adopted or implemented. The 2010 Clean Air Plan contains the following primary goals:

- Attain air quality standards;
- Reduce population exposure and protect public health in the SFBAAB; and
- Reduce GHG emissions and protect the climate.

The 2010 Clean Air Plan represents the most current applicable air quality plan for the SFBAAB. Consistency with this plan is the basis for determining whether the Project would conflict with or obstruct implementation of air quality plans.

Criteria Air Pollutants

In accordance with the State and federal CAAs, air pollutant standards are identified for the following six criteria air pollutants: ozone, carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and lead (Pb). These air pollutants are termed criteria air pollutants because they are regulated by developing specific public health- and welfare-based criteria as the basis for setting permissible levels. In general, the SFBAAB experiences low concentrations of most pollutants when compared to federal or State standards. The SFBAAB is designated as either in attainment or unclassified for most criteria pollutants with the exception of ozone, particulate matter less than 2.5 micrometers (PM₂.₅), and particulate matter less than 10 micrometers (PM₁₀), for which these pollutants are designated as non-attainment for either the State or federal standards. National and California ambient air quality standards and attainment status designations for the project area are provided in Table 3.3-1: National and California Ambient Air Quality Standards and Attainment Status.

By its very nature, regional air pollution is largely a cumulative impact in that no single project is sufficient in size to, by itself, result in non-attainment of air quality standards. Instead, a project’s individual emissions contribute to existing cumulative air quality impacts. If a project’s contribution to cumulative air quality impacts is considerable, then the project’s impact on air quality would be considered significant.

Land use projects may contribute to regional criteria air pollutants during the construction and operational phases of a project. Table 3.3-2: Criteria Air Pollutant Significance Thresholds identifies air quality significance thresholds followed by a discussion of each threshold. Projects that would result in criteria air pollutant emissions below these significance thresholds would not violate an air quality standard, contribute substantially to an air quality violation, or result in a cumulatively considerable net increase in criteria air pollutants within the SFBAAB.
Table 3.3-1: National and California Ambient Air Quality Standards and Attainment Status

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards<sup>1</sup></th>
<th>National Standards<sup>2</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentration</td>
<td>Attainment Status</td>
<td>Primary</td>
<td>Attainment Status</td>
</tr>
<tr>
<td>Ozone</td>
<td>1 hour</td>
<td>0.09 ppm (180 μg/m³)</td>
<td>Nonattainment</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>0.070 ppm (137 μg/m³)</td>
<td>Nonattainment</td>
<td>0.075 ppm (147 μg/m³)</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Respirable particulate matter (PM<sub>10</sub>)</td>
<td>24 hours</td>
<td>50 μg/m³</td>
<td>Nonattainment</td>
<td>150 μg/m³</td>
<td>Nonattainment</td>
</tr>
<tr>
<td></td>
<td>Annual arithmetic mean</td>
<td>20 μg/m³</td>
<td>Nonattainment</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fine particulate matter (PM<sub>2.5</sub>)</td>
<td>24 hours</td>
<td>—</td>
<td>—</td>
<td>35 μg/m³<sup>13</sup></td>
<td>Attainment</td>
</tr>
<tr>
<td></td>
<td>Annual arithmetic mean</td>
<td>12 μg/m³</td>
<td>Nonattainment</td>
<td>12.0 μg/m³<sup>16</sup></td>
<td>Nonattainment<sup>13</sup></td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>8 hours</td>
<td>9.0 ppm (10 mg/m³)</td>
<td>Attainment</td>
<td>9 ppm (10 mg/m³)</td>
<td>Attainment</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>20 ppm (23 mg/m³)</td>
<td>Attainment</td>
<td>35 ppm (40 mg/m³)</td>
<td>Attainment</td>
</tr>
<tr>
<td>Nitrogen dioxide (NO<sub>2</sub>)<sup>7</sup></td>
<td>Annual arithmetic mean</td>
<td>0.030 ppm (57 μg/m³)</td>
<td>Attainment</td>
<td>0.053 ppm (100 μg/m³)</td>
<td>Attainment</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>0.18 ppm (339 μg/m³)</td>
<td>Attainment</td>
<td>0.100 ppb (188 μg/m³)</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Sulfur dioxide (SO<sub>2</sub>)<sup>8</sup></td>
<td>24 hours</td>
<td>0.04 ppm (105 μg/m³)</td>
<td>Attainment</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>0.25 ppm (655 μg/m³)</td>
<td>Attainment</td>
<td>0.075 ppm (196 μg/m³)</td>
<td>Attainment</td>
</tr>
<tr>
<td>Lead<sup>9,10</sup></td>
<td>30-day average</td>
<td>1.5 μg/m³</td>
<td>Attainment</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Rolling 3-month average</td>
<td>—</td>
<td>—</td>
<td>0.15 μg/m³</td>
<td>—</td>
</tr>
<tr>
<td>Visibility-reducing particles<sup>11</sup></td>
<td>8 hours</td>
<td>See footnote<sup>12</sup></td>
<td>Unclassified</td>
<td>No national standards</td>
<td></td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 hours</td>
<td>25 μg/m³</td>
<td>Attainment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>1 hour</td>
<td>0.03 ppm (42 μg/m³)</td>
<td>Unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride<sup>12</sup></td>
<td>24 hours</td>
<td>0.01 ppm (26 μg/m³)</td>
<td>No information available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- mg/m³ = milligrams per cubic meter
- PM_{2.5} = fine particulate matter with an aerodynamic resistance diameter of 2.5 micrometers or less
- PM₁₀ = respirable particulate matter with an aerodynamic resistance diameter of 10 micrometers or less
- ppb = parts per billion
- ppm = parts per million
- μg/m³ = micrograms per cubic meter

GWF Outfall Removal
Project MND
July 2014
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standards</th>
<th>National Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentration</td>
<td>Primary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attainment Status</td>
<td>Attainment Status</td>
</tr>
<tr>
<td>1. California standards for ozone, CO (except 8-hour Lake Tahoe), SO₂ (1- and 24-hour), NO₂, and particulate matter (PM₁₀, PM₂.₅, and visibility-reducing particles) are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in California Code of Regulations, Title 17, section 70200.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM₁₀, the 24-hour is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than 1. For PM₂.₅, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standards.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Concentration expressed first in the units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25 degrees Celsius (°C) and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and reference pressure of 760 torr; parts per million in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. On January 15, 2013, EPA revised the national annual PM₂.₅ standard to 12.0 µg/m³ to provide increased protection against health risks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of ppm. To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until 1 year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. The California Air Resources Board (CARB) has identified lead and vinyl chloride as toxic air contaminants with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. The national standard for lead was revised on October 15, 2008, to a rolling 3-month average. The 1978 lead standard (1.5 µg/m³ as a quarterly average) remains in effect until 1 year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standards are approved.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. In 1989, CARB converted the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are “extinction of 0.23 per kilometer” and the “extinction of 0.07 per kilometer” for the statewide and Lake Tahoe Air Basin standards, respectively.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. No information is available to designate the region for vinyl chloride.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. EPA lowered the 24-hour PM₂.₅ standard from 65 µg/m³ to 35 µg/m³ in 2006. The EPA designated the BAAQMD as nonattainment of the PM₂.₅ standard on October 8, 2009. The effective date of the designation is December 14, 2009, and the BAAQMD had 5 years to develop an implementation plan that demonstrates how the region will achieve the revised standard by December 14, 2014. On January 9, 2013, the EPA issued a final rule to determine that the SFBAAB has attained the 24-hour PM₂.₅ NAAQS. This action suspended federal State Implementation Policy planning requirements for the Bay Area, but BAAQMD still needs to submit a redesignation request.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.3-2: Criteria Air Pollutant Significance Thresholds

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction Thresholds</th>
<th>Operational Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Daily Emissions (pounds/day)</td>
<td>Average Daily Emissions (pounds/day)</td>
</tr>
<tr>
<td>ROG</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>NOx</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>82 (exhaust)</td>
<td>82</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>54 (exhaust)</td>
<td>54</td>
</tr>
<tr>
<td>Fugitive Dust</td>
<td>Construction Dust Ordinance or other Best Management Practices</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Notes:
ROG = reactive organic gases
NOx = oxides of nitrogen
PM$_{10}$ = particulate matter with aerodynamic diameter less than 10 microns
PM$_{2.5}$ = particulate matter with aerodynamic diameter less than 2.5 microns

Ozone Precursors

The SFBAAB is currently designated as non-attainment for ozone and PM. Ozone is a secondary air pollutant produced in the atmosphere through a complex series of photochemical reactions involving reactive organic gases (ROG) and oxides of nitrogen (NOx). The potential for a project to result in a cumulatively considerable net increase in criteria air pollutants, which may contribute to an existing or projected air quality violation, are based on the CCAA and federal CAA emissions limits for stationary sources. To ensure that new stationary sources do not cause or contribute to a violation of an air quality standard, BAAQMD Regulation 2, Rule 2 requires that any new source that emits criteria air pollutants above a specified emissions limit must offset those emissions. For ozone precursors ROG and NOx, the offset emissions level is an annual average of 10 tons per year (or 54 pounds per day). These levels represent emissions by which new sources are not anticipated to contribute to an air quality violation or result in a considerable net increase in criteria air pollutants.

Particulate Matter (PM$_{10}$ and PM$_{2.5}$) and Fugitive Dust

The federal New Source Review (NSR) program was created by the federal CAA to ensure that stationary sources of air pollution are constructed in a manner that is consistent with attainment of federal health-based ambient air quality standards. For PM$_{10}$ and PM$_{2.5}$, the emissions limit under NSR is 15 tons per year (82 pounds per day) and 10 tons per year (54 pounds per day), respectively. These emissions limits represent levels at which a source is not expected to have an impact on air quality. Although the regulations specified above apply to new or modified stationary sources, land use development projects result in ROG, NOx, PM$_{10}$, and PM$_{2.5}$ emissions as a result of increases in vehicle trips, architectural coating, and construction activities. Therefore, the above thresholds can be applied to the construction and operational
phases of land use projects and those projects that result in emissions below these
thresholds would not be considered to contribute to an existing or projected air quality
violation or result in a considerable net increase in ozone precursors or particulate
matter. Due to the temporary nature of the Project removal activities, only the average
daily thresholds are applicable to construction-phase emissions.

Fugitive dust emissions are typically generated during construction phases. Studies
have shown that the application of best management practices (BMPs) at construction
sites significantly control fugitive dust. Individual measures have been shown to reduce
fugitive dust by anywhere from 10 to 98 percent (WRAP 2006). The BAAQMD has
identified a number of BMPs to control fugitive dust emissions from construction
activities. The City’s Construction Dust Control Ordinance (Ordinance 176-08, effective
July 30, 2008) requires a number of fugitive dust-control measures to ensure that
construction projects do not result in visible dust. The BMPs employed in compliance
with the City’s Construction Dust Control Ordinance is an effective strategy for
controlling construction-related fugitive dust.

Local Health Risks and Hazards

In addition to criteria air pollutants, individual projects may emit toxic air contaminants
(TACs). TACs collectively refer to a diverse group of air pollutants that are capable of
causing chronic (i.e., of long duration) and acute (i.e., severe but of short-term) adverse
effects to human health, including carcinogenic effects. Human health effects of TACs
include birth defects, neurological damage, cancer, and mortality. There are hundreds
of different types of TACs with varying degrees of toxicity. Individual TACs vary greatly
in the health risk they present; at a given level of exposure, one TAC may pose a
hazard that is many times greater than another.

Unlike criteria air pollutants, TACs do not have ambient air quality standards but are
regulated by the BAAQMD using a risk-based approach to determine which sources
and pollutants to control as well as the degree of control. A health risk assessment is an
analysis in which human health exposure to toxic substances is estimated, and
considered together with information regarding the toxic potency of the substances, to
provide quantitative estimates of health risks.

Air pollution does not affect every individual in the population in the same way, and
some groups are more sensitive to adverse health effects than others. Land uses such
as residences, schools, children’s day care centers, hospitals, and nursing and
convalescent homes are considered to be the most sensitive to poor air quality because
the population groups associated with these uses have increased susceptibility to
respiratory distress or, as in the case of residential receptors, their exposure time is
greater than for other land uses. Therefore, these groups are referred to as sensitive
receptors. Exposure assessment guidance typically assumes that residences would be
exposed to air pollution 24 hours per day, 350 days per year, for 70 years. Therefore, assessments of air pollutant exposure to residents typically result in the greatest adverse health outcomes of all population groups.

Exposures to PM$_{2.5}$ are strongly associated with mortality, respiratory diseases, and lung development in children, and other endpoints such as hospitalization for cardiopulmonary disease. In addition to PM$_{2.5}$, diesel particulate matter (DPM) is also of concern. The California Air Resources Board (CARB) identified DPM as a TAC in 1998, primarily based on evidence demonstrating cancer effects in humans (CARB 1998). The estimated cancer risk from exposure to diesel exhaust is much higher than the risk associated with any other TAC routinely measured in the region.

In an effort to identify areas of San Francisco most adversely affected by sources of TACs, San Francisco partnered with the BAAQMD to inventory and assess air pollution and exposures from mobile, stationary, and area sources within San Francisco. Areas with poor air quality, termed the “Air Pollutant Exposure Zone,” were identified based on two health-protective criteria: (1) excess cancer risk from the contribution of emissions from all modeled sources greater than 100 per one million population, and/or (2) cumulative PM$_{2.5}$ concentrations greater than 10 micrograms per cubic meter (μg/m3).

Excess Cancer Risk

The above 100 per one million persons (100 excess cancer risk) criteria is based on U.S. Environmental Protection Agency (USEPA) guidance for conducting air toxic analyses and making risk management decisions at the facility- and community-scale level. As described by the BAAQMD, the USEPA considers a cancer risk of 100 per million to be within the “acceptable” range of cancer risk. Furthermore, in the 1989 preamble to the benzene National Emissions Standards for Hazardous Air Pollutants rulemaking, the USEPA states that it “…strives to provide maximum feasible protection against risks to health from hazardous air pollutants by (1) protecting the greatest number of persons possible to an individual lifetime risk level no higher than approximately one in one million and (2) limiting to no higher than approximately one in 10,000 [100 in one million] the estimated risk that a person living near a plant would have if he or she were exposed to the maximum pollutant concentrations for 70 years.” The 100 per one million excess cancer cases is also consistent with the ambient cancer risk in the most pristine portions of the San Francisco Bay Area based on BAAQMD regional modeling.

Fine Particulate Matter

In April 2011, the USEPA published *Policy Assessment for the Particulate Matter Review of the National Ambient Air Quality Standards*, “Particulate Matter Policy Assessment.” In this document, USEPA staff concludes that the current federal annual
PM$_{2.5}$ standard of 15 µg/m3 should be revised to a level within the range of 13 to 11 µg/m3, with evidence strongly supporting a standard within the range of 12 to 11 µg/m3. The Air Pollutant Exposure Zone for San Francisco is based on the health-protective PM$_{2.5}$ standard of 11 µg/m3, as supported by the USEPA’s Particulate Matter Policy Assessment, although lowered to 10 µg/m3 to account for uncertainty in accurately predicting air pollutant concentrations using emissions modeling programs.

Land use projects within the Air Pollutant Exposure Zone require special consideration to determine whether the project’s activities would expose sensitive receptors to substantial air pollutant concentrations or add emissions to areas already adversely affected by poor air quality.

Topography, Meteorology, and Climate

The SFBAAB covers approximately 5,540 square miles of complex terrain, made up of coastal mountain ranges, inland valleys, and the San Francisco Bay. The SFBAAB is generally bordered on the west by the Pacific Ocean, on the north by the Coast Ranges, and on the east and south by the Diablo Range. The Project area is located in the westernmost portion of the SFBAAB.

Meteorological conditions in the SFBAAB are warm and mainly dry in summers, and mild and moderately wet in winters. Marine air has a moderating effect on the climate throughout much of the year. Winds flow through the Golden Gate from the Pacific Ocean, but direct flow into eastern Alameda County is impeded by the East Bay hills. Marine air mostly is blocked from the area until late afternoons or on days when deep marine inversions develop with strong onshore flows.

Winds from the west-southwest are most prevalent during spring and summer afternoons. These are the breezes that travel from the Pacific Ocean through gaps in the East Bay hills. When the ocean breeze is weak, winds become light and variable and nighttime drainage flows typically develop. On clear nights with light winds, inversions develop in the coastal valleys, separating the surface wind flow from winds aloft. The drainage flow is usually light and stable, flowing toward the Carquinez Strait.

Local Air Quality Conditions

The determination of whether a region’s air quality is healthful or unhealthful is made by comparing contaminant levels in ambient air samples to the California Ambient Air Quality Standards (CAAQS) and National Ambient Air Quality Standards (NAAQS). Both the CARB and USEPA ambient air concentrations are monitored at various regions throughout the SFBAAB to designate an area’s attainment status with respect to the CAAQS and NAAQS, respectively, for criteria air pollutants. The purpose of these designations is to identify areas with air quality problems and thereby initiate planning...
efforts for improvement. The three basic designation categories are “nonattainment,” “attainment,” and “unclassified.” The “unclassified” designation is used in an area that cannot be classified on the basis of available information as meeting or not meeting the standards. The most recent attainment designations with respect to the SFBAAB are shown in Table 3.3-1 above. With respect to the CAAQS, the SFBAAB is designated as a nonattainment area for ozone, PM$_{10}$, and PM$_{2.5}$, and as an attainment or unclassified area for all other pollutants. With respect to the NAAQS, the SFBAAB is designated as a marginal nonattainment area for ozone and as an attainment or unclassified area for all other pollutants.

3.3.2 Regulatory Setting

Federal and State

Federal and State laws and regulations pertaining to this issue area and relevant to the Project are identified in Table 3.3-3.

| U.S. Federal Clean Air Act (FCAA) (42 USC 7401 et seq.) | The FCAA requires the USEPA to identify National Ambient Air Quality Standards (NAAQS) to protect public health and welfare. National standards are established for ozone (O$_3$), carbon monoxide (CO), nitrogen dioxide (NO$_2$), sulfur dioxide (SO$_2$), particulate matter (PM$_{10}$ and PM$_{2.5}$), and lead (Pb). In 2007, the U.S. Supreme Court ruled that carbon dioxide (CO$_2$) is an air pollutant as defined under the FCAA, and that the USEPA has authority to regulate GHG emissions. Pursuant to the 1990 FCAA Amendments, USEPA classifies air basins (or portions thereof) as in “attainment” or “nonattainment” for each criteria air pollutant, based on whether or not the NAAQS are achieved. The classification is determined by comparing monitoring data with State and Federal standards.
• An area is classified as in “attainment” for a pollutant if the pollutant concentration is lower than the standard.
• An area is classified as in “nonattainment” for a pollutant if the pollutant concentration exceeds the standard.
• An area is designated “unclassified” for a pollutant if there are not enough data available for comparisons. |
| CA California Clean Air Act of 1988 (CCAA) (Assembly Bill [AB] 2595) | The CCAA requires all air districts in the State to endeavor to achieve and maintain State ambient air quality standards for O$_3$, CO, SO$_2$, NO$_2$, and PM; attainment plans for areas that did not demonstrate attainment of State standards until after 1997 must specify emission reduction strategies and meet milestones to implement emission controls and achieve more healthful air quality. The 1992 CCAA Amendments divide O$_3$ nonattainment areas into four categories of pollutant levels (moderate, serious, severe, and extreme) to which progressively more stringent requirements apply. State ambient air standards are generally stricter than national standards for the same pollutants; California also has standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. |
| CA Other | • Under California’s Diesel Fuel Regulations, diesel fuel used in motor vehicles, except harbor craft, has been limited to 500 parts per million (ppm) sulfur since 1993. The sulfur limit was reduced to 15 ppm beginning September 1, 2006, and harbor craft were included starting in 2009.
• CARB’s Heavy Duty Diesel Truck Idling Rule (Cal. Code Regs., tit. 13, § 2485) prohibits heavy-duty diesel trucks from idling for longer than 5 minutes at a... |
Table 3.3-3 Laws, Regulations, and Policies (Air Quality)

| |
|---|---|
| | time (except while queuing, provided the queue is located beyond 100 feet from any homes or schools).
| | • The Statewide Portable Equipment Registration Program (PERP) regulates portable engines/engine-driven equipment units. Once registered in the PERP, engines and equipment units may operate throughout California without the need to obtain individual permits from local air districts. |

1 **Local**

The Conservation Element of the Contra Costa County General Plan 2005-2020 includes goals and policies that aim to improve local and regional air quality throughout the County. The following air resources policies may be applicable to the Project:

- Policy 8-103 - When there is a finding that a proposed project might significantly affect air quality, appropriate mitigation measures shall be imposed.
- Policy 8-104 - Proposed projects shall be reviewed for their potential to generate hazardous air pollutants

9 **3.3.3 Impact Analysis**

a) Conflict with or obstruct implementation of the applicable air quality plan?

No Impact. The Bay Area 2010 Clean Air Plan was adopted on September 15, 2010, and is the most recent applicable air quality plan within the BAAQMD. The 2010 Clean Air Plan provides a comprehensive plan to improve San Francisco Bay Area air quality and protect public health. Although the legal impetus for the 2010 Clean Air Plan was to update the prior ozone plan, the 2010 Clean Air Plan serves as a multi-pollutant plan addressing ozone precursors (ROGs and NO₃), PM, air toxics, and GHGs. The 2010 Clean Air Plan control strategy has 55 specific control measures in six categories, including stationary sources, mobile sources, transportation control, land use/local impact, and energy/climate.

The BAAQMD recommends ensuring compliance with the 2010 Clean Air Plan by asking three project-related questions:

1. **Does the project support the primary goals of the 2010 Clean Air Plan?**
 a. Attain air quality standards (see *Impact b*) discussion below)
 b. Reduce population exposure and protect public health in the San Francisco Bay Area (see *Impact d*) discussion below)
 c. Reduce GHG and protect the climate (see GHG impact analysis in Section 3.7)
2. Does the project include applicable control measures for the 2010 Clean Air Plan?

 a. The Project will implement BMPs consistent with the applicable 2010 Clean Air Plan control measures for construction activity.

3. Does the project disrupt or hinder implementation of any 2010 Clean Air Plan control measure?

 a. This Project does not involve any new long-term operational emissions in the BAAQMD. The short-term removal activity emissions would be temporary and minor. The temporary removal activities will be managed consistent with applicable 2010 Clean Air Plan control measures. Therefore, the Project would not disrupt or hinder implementation of any 2010 Clean Air Plan control measure.

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

Less than Significant Project removal activity emissions are considered short-term and temporary in nature; however, they have the potential to substantially affect air quality. During removal activities, various types of equipment and vehicles would temporarily operate on the Project site. Exhaust emissions would be generated from a variety of sources: removal equipment, commercial marine equipment, personnel commuting, and material hauling. These activities would involve the use of diesel- and gasoline-powered equipment that would generate emissions of criteria pollutants. Generation of these emissions varies as a function of vehicle trips per day associated with removal of the outfall, worker commute trips, types and number of construction equipment used, and intensity and frequency of equipment operation.

Removal activities would generate fugitive dust emissions, which can also lead to adverse health effects and nuisance concerns such as reduced visibility and soiling of exposed surfaces. Project fugitive dust emissions can vary greatly, depending on the level of activity, the specific operations taking place, number and types of equipment operated, and vessel speeds.

Temporary and short-term Project-generated emissions of criteria air pollutants and ozone precursors were assessed in accordance with methods recommended by the BAAQMD. Project-related emissions were quantified using the California Emission Estimator Model Version 2013.2.2 (SCAQMD 2011). Project-related marine harbor craft emissions were estimated using the CARB Emissions Estimation Methodology for Commercial Harbor Craft Operating in California (2007). Specific Project information, such as schedule, duration of activities, types of equipment used, was provided by GWF Power Systems, L.P (GWF or Applicant). Where Project-specific information was not
available, conservative assumptions and/or default assumptions contained in were used
to quantify emissions.

As indicated in Table 3.3-4, the Project’s emissions would be well below the BAAQMD’s
thresholds of significance. The Project would be consistent with the BAAQMD’s
requirements and would not conflict with the applicable air quality plan, therefore the
Project’s impact would be less than significant.

Table 3.3-4 Project Removal Activity Equipment Emissions

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Removal Equipment Emissions Totals (lbs/day)</th>
<th>Marine Equipment Emissions Totals (lbs/day)</th>
<th>Project Average Daily Emissions (lbs/day)</th>
<th>BAAQMD Significance Thresholds (lbs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROG</td>
<td>0.9</td>
<td>1.3</td>
<td>2.2</td>
<td>54</td>
</tr>
<tr>
<td>NOx</td>
<td>8.4</td>
<td>7.6</td>
<td>16.0</td>
<td>54</td>
</tr>
<tr>
<td>Exhaust PM10</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>82</td>
</tr>
<tr>
<td>Exhaust PM2.5</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>54</td>
</tr>
</tbody>
</table>

Notes:
ROG = reactive organic gases; NOx = oxides of nitrogen; CO = carbon monoxide; PM10 = particulate
matter with aerodynamic diameter less than 10 microns; PM2.5 = particulate matter with aerodynamic
diameter less than 2.5 microns; tons/yr = tons per year; lbs/day = pounds per day
1Particulate emissions from the marine equipment were not speciated into PM10 and PM2.5, therefore it
was conservatively assumed the PM emissions could either be all PM2.5 or PM10.

c) Result in a cumulatively considerable net increase of any criteria pollutant for
which the proposed project region is non-attainment under an applicable federal
or State ambient air quality standard (including releasing emissions which
exceed quantitative thresholds for ozone precursors)?

Less than Significant. Project impacts on air quality that are potentially significant on
an individual level also may cause a cumulatively considerable contribution. Thus, it is
reasonable to consider projects that do not have potentially significant impacts on air
quality on an individual level will not have the potential to cause a cumulatively
considerable contribution to air quality impacts. The BAAQMD also currently
recommends that for projects not having potentially significant impacts on air quality on
an individual level, the potential cumulative impacts also should be evaluated for
consistency with the local general plan. The Project is not a typical land use project that
can be compared with or evaluated against land use designations or zoning from a
general plan; therefore, the second criteria is not applicable to the Project. Thus, the
first criterion of whether the Project’s individual or “project-level” emissions are
potentially significant has been used to determine its potential cumulative impact.

Emissions would be temporary and short-term which would ensure that the Project
would not generate a cumulatively considerable contribution to regional air quality
pollutants in the Project area that are nonattainment under a State or Federal ambient air quality standard. Therefore, the Project would not result in a cumulatively considerable incremental contribution to a significant cumulative impact on air quality, and this impact would be considered less than significant.

d) The proposed project would not expose sensitive receptors to substantial pollutant concentrations.

Less than Significant. Removal activities would generate DPM exhaust emissions as estimated in Table 3.3-4. DPM has been classified as a TAC by the CARB, and even acute exposure may result in health impacts. Removal activities for the Project are minimal and short-term, with removal activities anticipated to occur over a duration of approximately 2 weeks. In addition, removal activity emissions would occur intermittently throughout Project removal activities (i.e., removal equipment would not operate continuously for eight hours each day).

According to the Office of Environmental Health Hazard Assessment, health risk assessments that determine the health risks associated with exposure of residential receptors to TAC emissions should be based on a 70-year exposure period, and health risk assessments that address the health risk associated with exposure of children to TAC emissions should be based on a 9-year exposure period (Salinas 2004). TAC exposure to children is of special concern because children typically metabolize more air per unit of body weight in comparison to adults and can be more sensitive to toxics during development. However, health risk assessments should be limited to the period/duration of activities associated with the emissions activity (OEHHA 2003).

As discussed above, removal activities would occur over approximately 2 weeks, after which all removal equipment emissions would cease. Therefore, the total exposure time would be less than 0.5 percent of the minimum exposure time for a child-based health risk assessment (i.e., 9 years) and less than 0.06 percent of a typical residential health risk assessment (i.e., 70 years). Removal activities would not be within 500 feet of residential receptors, with the closest receptor located at the corner of Port Chicago Highway and Wharf Drive approximately 1 mile southeast of the site. Use of off-road removal equipment would be short-term and temporary in nature (i.e., approximately 2 weeks), have a low exposure period (i.e., less than 0.5 percent of a typical residential health risk assessment), and low level of emissions (i.e., less than 1 pound of DPM per day). Removal activities would not result in the exposure of sensitive receptors to any substantial levels of air pollutants which would result in a health hazard or exceed applicable standards, therefore the Project’s impact would be less than significant.

e) The proposed project would not create objectionable odors affecting a substantial number of people.
Less than Significant. The occurrence and severity of odor impacts depends on numerous factors, including the nature, frequency, and intensity of the source; wind speed and direction; and the sensitivity of the receptors. Although offensive odors rarely cause any physical harm, they can be very unpleasant, leading to considerable distress among the public and cause citizens to submit complaints to local governments and regulatory agencies. Projects with the potential to frequently expose individuals to objectionable odors are deemed to have a significant impact. Typical facilities that generate odors include wastewater treatment facilities, sanitary landfills, composting facilities, petroleum refineries, chemical manufacturing plants, and food processing facilities.

Removal activities involving heavy-duty trucks and off-road construction equipment would generate DPM exhaust, which can be considered offensive by some individuals. As described above, Project removal activity sites would be located approximately 1 mile from residences. This setback distance will prevent any potential for objectionable odors from reaching the nearest receptor. In addition the removal activities are not intensive, are occurring for a very short duration, and will cease at night. The intermittent and temporary removal activities are not expected to cause a significant odor impact on a substantial number of sensitive receptors, nor would the Project’s removal activities expose a substantial number of receptors to odor emissions, therefore the Project’s impact would be less than significant.

3.3.4 **Mitigation Summary**

The Project would not result in significant impacts to Air Quality; therefore, no mitigation is required.