

The Importance of Platform Process Safety Audits –
Data Collection and Documentation Needs

Casey Elwell, PE October 7, 2014

Why are Audits Important?

InterAct

- Verify that process safety systems are working as intended to manage risk and to keep everyone safe!
- Operators have opportunity for refresher discussions on process and safety system operations due to interaction with third-party audit/verification personnel.
- Standards, approaches, and processes are ever evolving, which audit could identify items for improvement.
- Operators, Engineers, Scientists, Trades, Contractors, or Regulators working with out-of-date information will result in the following:
 - More time/money expended to perform tasks with potential rework
 - Overlooked/misidentified process optimizations opportunities

Terms

InterAct

API = American Petroleum Institute

MAWP = Maximum Allowable Working Pressure

MOC = Management of Change

PFD = Process Flow Diagram

PHA = Process Hazard Analysis

P&ID = Piping & Instrumentation Diagram

PSSR = Pre-Startup Safety Review

SAFE = Safety Analysis Function Evaluation

Process Safety Audit Steps

Identify Process Safety Items to be Audited (P&IDs/SAFE charts in example)

- Gather current and historical documentation from Operator to be audited
 - PFD, P&IDs, SAFE Charts, control philosophy, test records, and operating procedures
- Receive training from Operator for field safe access check of documentation
- Review PHA/PSSR information
- Perform Third-Party Independent Audit

Break Process Safety Item into smaller tasks (SAFE chart – single process)

- Pressure relief system, fire water system, production well, injection well, etc.
- Assemble drawings by system for field verification
- Check whether system modifications are planned and review MOC documentation

P&ID Verification

InterAct

Trace each process system line

- Wellhead to departing pipeline
- Locate safety devices
- Verify process control components
- Verify maximum allowable working pressures (MAWP)

SAFE Chart Updating

Update equipment and safety device function matrix

- All sensing devices
- Shutdown Valves (SDVs)
- Shutdown Devices
- Emergency Support Systems

Refer to API RP 14C – Recommended Practice for Analysis, Design, Installation and Testing of Basic Surface Safety Systems for Offshore Production Systems

Component Checklist

InterAct

Process Component Checklist

- Flow Lines (segment portion of flow line with different assigned operating pressures than other portions of the same flow line)
- Wellhead Injection Lines
- > Headers
- Pressure Vessels
- > Atmospheric Vessels
- Fired and Exhaust Heated Components
- Pumps
- Compressors
- Pipelines (Lines between Platforms or Platform to/from Shore)
- Heat Exchangers

Undesirable Events

InterAct

List of some undesirable events

- Overpressure or underpressure
- Leak (low flow) or Overflow
- ➤ Gas Blowby
- Excess Temperature
- Direct Ignition Source
- Excess fuel in Firing Chamber

SAFE Chart Audit

InterAct

Master Safety Analysis Table

- Undesirable Events
- Cause
- > Effect
- Detectable Condition at Component
- Protection
 - Primary
 - Secondary

SAFE Chart Audit Example InterAct

SAFE Chart Audit Example

Pipeline Pump Overpressure Example

- Cause
 - Closed/Blocked Valve
- > Effect
 - Potential rupture or leak of process fluids
- Detectable Condition at Component
 - High Pressure
- Primary Protection
 - Pressure Safety High (PSH) shutdown
- Secondary Protection
 - Pressure Safety Valve (PSV) relieves system pressure

SAFE Chart Audit Example InterAct

Pump Example

InterAct

Pump Component Checklist (pipeline pumps)

- Pressure Safety High (PSH)
 - Installed
- Pressure Safety Low (PSL)
 - Installed
 - Pump does not handle hydrocarbons.
- Pressure Safety Valve (PSV)
 - Installed
 - Pump is kinetic energy type and incapable of generating a head greater than the MAWP of the discharging pipe.
- Flow Safety Valve (FSV)
 - Installed

SAFE Chart (Pump Example) InterAct

EXAMPLE SAFETY ANALYSIS FUNCTION EVALUATION CHART									Function Performed	MAIN ANNUNCIATOR PANEL (ALARM)	PRESSURE RELIEF	MINIMIZE BACKFLOW	CLOSE SDV INLET	STOP PUMP P.1
Rev. 9/14 Drawing Number 5							of x		SHUTDOWN OR CONTROL DEVICE ID				SDV 004	
\vdash		Process Component	Devic	ce I.D.	Alt	ernate Prot	ection		Ľ				G)	\dashv
Identification		Service			SAC REF. Number	Alternate Device if Applicable		İ						
_		PIPELINE	PSH	001						Х			Χ	Х
Р	1													
Р	1	PUMP	PSL PSV	002			_			Х	Х		Х	Χ

Safety Analysis Checklist Codes InterAct

Safety Analysis Checklist (SAC)

- Lists process components
- List of all recommended safety devices
- List conditions under which particular safety devices may be excluded (SAC'd out)

Lessons Learned

Process Safety Audit – Lessons Learned

- Audit Execution
 - Remind personnel that goal is to keep processes operating as intended, to manage risk, and to keep personnel safe on the platform.
 - Avoid tracing piping when simultaneous operations are occurring at the facility.
 - Overhead scaffolding and welding habitats can obscure the piping from the walkways, requiring much more time to check and verify the P&IDs/SAFE Charts.
 - Communicate with Operation & Maintenance personnel regarding component/device controls during the field verification process to validate operating as intended, when possible.
 - When available, device test records are valuable in checking that the correct device labels are present on the P&IDs, as well as checking the device functionality listed on the SAFE charts.
 - Take temporary tags for devices/valves that are missing tags for later permanent tag installation.

Lessons Learned

Process Safety Audit – Lessons Learned (continued)

- Post Audit
 - Recommend Management of Change (MOC) procedures include drawing revisions when equipment or control logic are changed.
 - One goal is to improve communications between Engineering, Operations & Maintenance, and Health/Environmental/Safety (HES) personnel when process changes are made.
 - Process Safety Audit provides feedback whether Process Hazard Analysis (PHA) → Pre-startup Safety Review (PSSR) with overarching MOC procedures are being effectively used for risk management.
 - Process Safety Audit approaches vary and should migrate towards evaluation of the levels of documentation, implementation, and effectiveness for risk management.

We plan. We engineer. We deliver. You succeed.