Lesson Learned from the Installation of a Flexible Seismic Product Pipeline Mitigation System

Presented by:
William Bruin, P.E.
Simpson Gumpertz & Heger, Inc.
October 7, 2014

Prevention First 2014, Long Beach, California
The story you are about to see is true.

The names have been changed to protect the innocent.
Marine Oil Terminal X

- Island wharf
- Mid-1950’s design
- Concrete piles & deck
- 70,000 DWT capacity
Terminal X’s MOTEEMS History

• Medium Risk MOT

• 2010 Initial Audit Completed
 – Complicated kinematic situation
 – Seismically deficient wharf – but vague on reasons/mitigations
 – Pipelines = spill risk in seismic condition

• 2011-2012 Subsequent Seismic Mitigation Development
 – Goal = Develop mitigation plan
 – Wharf Level 2 compliance verified as-is, except …
 • Ramp Damage = Pipeline spill risk
 • Large Seismic Displacements
 – 44 inches (+/- 22 inches) Perpendicular to Shore
 – 40 inches (+/- 20 inches) Parallel to Shore
 – 12 inches (+/- 6 inches) Vertical Moment

• 2012-2014 Implementation of Mitigation
Level 2 Kinematic Seismic Movements

- Wharf Displacement
- ~3-in. Kinematic
- ~16-in. Total Lateral

Prevention First 2014
Terminal X – Impacted Wharf Pipelines
Terminal X – Very Congested
Terminal X’s Seismic Compliance Challenges

- Large seismic displacements
- Extensive existing infrastructure in project area
- Traditional piping expansion loops would not work!
 - Limited working footprint
 - Convention loops too big
- No clear regulatory path to introduce “new” technologies or non-traditional approaches
- What would State Lands accept?
Terminal X’s Mitigation Attack Plan

1) Brainstorm solutions
 - Include all stakeholders

2) Work out the technical issues
 - Avoid the unproven concepts
 - Apply available technologies
 - Minimize regulatory issues

3) Concept ranking
 - Risk reduction & overall safety
 - Present & future cost
 - Regulatory risk

4) Develop regulatory path forward
 - Concept driven
 - Regulator participation
 - Stepped approach
Concept 1 - Conventional Hose Approach
Think Vessel-to-Vessel
Think Vessel-to-Vessel
Concept 2 - Flex-Hose Loop Approach
Concept 3a - Swivel Joints – Nested Approach
Concept 3b – Swivel Joints – Distributed Approach
Terminal X’s Final Decision

• Flex-hose was selected over swivel joint designs
 – Equal safety & spill risk reduction
 – Greater displacement flexibility / More robust
 – Quicker installation
 – Flex-hoses significantly less costly
 • ~½ (even with periodic replacement)
 – No swivel joint maintenance / exercising

• State Lands Concessions
 – Conduct Hazard & Risk Assessment of Concept
 – Flex-hose treated like convention transfer hoses
 • Follow existing hose regulations
 • Annual hydrotesting
 • Maximum replacement interval
Flex-Hose Loop Design

TYPICAL LONGITUDINAL SECTION - HOSE OPTION
Flex-Hose Loop

- Stainless steel double braided hose
- Hard piped hose saddle
Lessons Learned

• Don’t exclude Operators from design! – They know a lot!
• Regulatory approval process takes time – Plan for it!
 – New systems require extra thought
 – Communicate with State Lands often
 • Educate them on goals / problems / constraints
 • Listen to their concerns (often defines path forward)
 • Update them on progress
• Critical systems assessment and hazard & risk assessment are effective tools …
 • to define mitigation scope
 – Pipelines are the only systems requiring post-event operability
 – Not all systems require flexibility
 • to identify design risks
 • to address regulators concerns
 • to document design process
The story you have just seen is true.
The names have been changed to protect the innocent.
Questions?

... and special thanks to Terminal X for allowing SGH to share their story!