LNG Bunkering – Recommended Practice

Tony Teo - DNV GL Maritime North America Technology & Business Director
Safeguarding Life, Property & the Environment

FOUNDED
- DNV in 1864 and GL in 1867

PEOPLE
- 16000 employees worldwide in 100 countries
- Highly qualified surveyors & engineers with extensive knowledge in all disciplines

TECHNOLOGY
- 5% Revenue (MUSD170) devoted to R&I => Standards & Initiatives

Maritime Services:
- Ship & Offshore Classification
- Maritime Advisory
- Verification
Vessels in Operation or On Order today

Number of LNG fuelled ships*

2012

31

116

BiT VIKING: First LNG Fuelled Tanker

*Number of LNG fuelled ships as of 2012.
66 ON ORDER

Commonality?
LNG BUNKERING - How the ISO Standard started?

- ISO TC67 approved the proposal provided more than 5 countries participated
- Kick off meeting was in June 2011 in Paris with 14 participants.
- Today the work group comprise 30+ participants representing
 - 15 countries.
 - 8 oil, gas and energy companies
 - 2 regulators (USCG included)
 - 3 shipping companies
 - 7 equipment providers
 - Sigtto and 3 class societies
- Draft Report in final stage
Globalization of LNG bunkering enhances the need for standard and compatible solutions

Gather experience and knowledge

ISO TC67/WG 10

DNV GL RP

Quebec City

Staten Island

Jacksonville, FL
- Port Fourchon
- Plaquemine
- Baton Rouge

Tacoma, WA

Cook Inlet

Vancouver

NORWAY

Vestbase

Saga fjordbase

CCB

Haljem

Norge

Risavika

Skagerrak

Hirtshals Harbour

Gøteborg
LNG BUNKERING TYPES

- Shore to Ship
- Bunker Vessel to Ship
- Truck to ship
- ISO Tanks
RP is divided into 3 main parts - together demonstrate compliance with the functional requirements in the ISO guidelines

1 – Safe design and operation
2 – Safety Management System
3 – Risk Assessment
Safety philosophy is based on a Bow-Tie model with 3 layers of defence representing safety critical design and operational barriers.
Functional requirements for 1st layer of defence as prevention against accidental releases

- **Compatibility** of equipment and operational practices between supplier and receiving ship
- No planned release of LNG or natural gas to the atmosphere during normal operations
- Requirements for connection couplings
- Connect and disconnect without NG in the lines
- Design to prevent liquid locks
- Safety requirements to operating procedures
- Maintenance and testing
- Organizational plan
Functional requirements for 2nd layer of defence, focused on ability to contain and control releases

- Effective \textit{detection} of potential LNG and natural gas releases
- Minimise the likelihood of \textit{igniting} a potential LNG release
- Effective and accountable \textbf{Emergency Shut-Down} (ESD) systems
- \textbf{Dry Break Coupling} shall be installed to minimise damage to the transfer system in case of ships drift or vehicle movement.

\textbf{Cryogenic protection}

- Personnel shall use \textbf{PPE} (Personnel protective equipment)
- A \textbf{Safety Zone} shall be established around the bunkering operation into which only essential personnel shall have access

\textbf{Crack or Frost Burn}
Functional requirements for 3rd layer of defence, barriers to minimize consequences that are not contained

- A **Security Zone** shall be established to monitor and control activities in the area adjacent to the bunkering operation to reduce possible ignition sources.

- An **Emergency Response plan** shall be in place outlining the requirements for fire fighting, evacuation, first aid, ambulances and communication to authorities.

- **Emergency response plan shall be communicated** to all parties involved in the bunkering operation including the planned emergency response team and be part of the training program.
Focus areas to be included in the Safety Management System, and also to align and provide compatibility between different stakeholders.
Training for personnel shall be in place reflecting Roles and Responsibilities and the complexity of the operation and facilities

- **Basics of LNG handling**
 - Hazards and properties of LNG, Natural Gas and inert gases
 - Use of PPE equipment
 - Safety and fire fighting

- **Use of equipment**
 - Hoses, couplings, valves, ESD, etc.

- **Facility specific operations**
 - Organisation/communication
 - Emergency preparedness.
Competence Standard 3.325 on LNG Fuel for Training Centres

- General knowledge & understanding
- The storage system
- The gas supply system
- The LNG monitoring system
- Venting & ventilation
- Compressors
- Safety systems & components
- Auxiliary systems
- Bunkering
- Tank conditioning
- Warm up / heating
- Contingencies
Risk assessments - required on different levels and in different phases of the system development

- **Strategy**
 - Definition of study basis:
 - Policy
 - Criteria

- **Feasibility**
 - Conceptual design, initial HAZID

- **Design**
 - Standard scenario
 - All functional requirements are met
 - Design of components are according to recognised standards
 - Safety zone is established by deterministic approach

- **Commissioning**
 - Construction, training and commissioning

- **Operation**
 - Operation of the bunkering facility

Deterministic OR

- **QRA**
 - Standard scenario not met
 - SIMOPS or Passenger
 - Deviations from functional requirements
 - Safety zone is established by probabilistic approach
Key Element in the risk assessment is determining the Safety Zone

PHAST: Models the Gas Cloud & Pool Fire

<table>
<thead>
<tr>
<th>Ship Cargo Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Leak</td>
</tr>
<tr>
<td>2. Pool</td>
</tr>
<tr>
<td>3. Cloud</td>
</tr>
</tbody>
</table>

1. **Dispersion & Flash Fire**
 - Distance to LFL: 2100 m
 - Burnt Gases
 - Uncombusted Gas
 - Combustion Zone

2. **Pool Fire**
 - Initial pool size
 - Sustainable pool size
 - Pool Radius: 86 m, 37.5 kW/hm² (280 m), 12.5 kW/hm² (540 m), 5 kW/hm² (790 m)

3. **Radiation contours**
 - Sunny Day: 1 kW/m²

4. **Flash fire**
5. **Pool**

Escape Way

Lifeboat
Conclusion

- 4 Types of LNG Bunkering
- 3 Functional Requirement
 - Safe Design & Operation
 - Safety Management System
 - Risk Management
- 3 Layers of Defence
- Compatible Safety Management System
- Training of Personnel
- Risk Management
 - Deterministic
 - QRA

First Bunker Barge “SEAGAS”
QUESTIONS?

NAVIGATING COMPLEXITY

Tony Teo
Tony.Teo@dnvgl.com
www.dnvgl.com

PLANNED BUNKERING LOCATIONS

Cook Inlet, Vancouver
Quebec City
Tacoma
Staten Island
Jacksonville
Port Fourchon,
Plaquemine, Baton Rouge

SAFER, SMARTER, GREENER