Vessel Traffic Analysis in the Carquinez Strait

Martinez

Jean O. Toilliez, PE, PhD & Jack W. Gerwick, PE Ben C. Gerwick, Inc. | COWI



### Density Map by AIS

### Marine Traffic in California





### Passing Vessel Loads

- History of strong passing vessel incidents in the area
- Documented interaction (Jan. 2012)
  - > The interaction occurred a vessel was transiting Pittsburg to sea (...).
  - On the passing of that vessel, a moored vessel experienced a sudden surge, which pulled the ship off the dock approximately four feet, moved her seven feet fore and aft, and separated three mooring pendants.
  - The estimated distance between the two ships was approximately 150 feet





# Assessing Passing Vessel Loads





Sample data showing typical measured force and moment records along with low pass filtering. From TR-6056-OCN by Kriebel (2005)

### Work Flow

Vessel properties (hydrodynamic coefficients from AQWA, WAMIT, etc.) and mooring configuration

Meteocean parameters (waves, tides, currents, winds, etc.)

Informed time-based passing vessel history using model

Dynamic mooring model (OPTIMOOR, aNyMOOR.TERMSIM and .DYNFLOAT, etc.)

Dynamic mooring loads and motions

### Objectives and Methods

#### Motivations

- Inform design of new MOT in the San Francisco North Bay
- History of passing vessel loads with documented incidents in that region

#### Model Selected

PASS-MOOR by Kriebel (per MOTEMS requirements)

#### > Needs

- > Dimensions of likely vessel
- Measured distance from MOT
- Draft conditions
- > Other traffic data

#### > Methods

- AIS data provided by the Marine Cadastre by NOAA
- Use scripting tools and ArcGIS to extract data



# The NOAA Marine Cadastre

- > MarineCadastre.gov
  - Partnership between NOAA Coastal Services Center and DOI Bureau of Ocean Energy Management (BOEM)
- Coverage
  - > 48 states
  - All types of vessels equipped with AIS
  - Some data restricted by USCG
- > Data
  - > 1-minute Automated Information System (AIS)
  - Curated and hosted by the National Ocean Service (NOS), Coastal Services Center (CSC)



## Keys and Fields

#### Broadcast

- •OBJECTID
- •SOG
- •COG
- Heading
- •ROT
- BaseDateTime
- Status
- VoyageID
- •MMSI
- ReceiverType
- •ReceiverID

#### Ship

- •OBJECTID
- Status
- VoyageID
- •MMSI
- X\_Long and Y\_Lat

#### Vessel

- •OBJECTID
- •MMSI
- •IMO
- CallSign
- •Name
- VesselType
- Length
- Width
- ${\bf \bullet Dimension Components}$

#### Voyage

- •OBJECTID
- VoyageID
- Destination
- Cargo
- Draught
- •ETA
- StartTime
- EndTime
- •MMSI

### **Data Structure**

### Availability

- > 2009, 2010 and 2011 available online
- > Provided as GIS database

### > Length and depth

- One dataset per month (20M points)
- One year record: complete 2010 dataset comprises over 200M AIS points.

#### > Attributes

- The database maintained by the MMC features unit/attribute pairs
- UTM Zone 10, and spans the entire calendar year of 2010
- Time is provided in the Coordinated Universal Time (UTC) 24-hour format ("1600Z" is 0700a UTC-0800 (PDT)).

#### > Restrictions

MMSI (Maritime Mobile Service Identity) field has been encrypted for the 2010 and 2011 data at the request of the U.S. Coast Guard.



#### Structure

# Standard Vessel Types

| Code  | Definition                                                       |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|
| 0-9   | Not Available                                                    |  |  |  |
| 10-19 | Reserved for future use                                          |  |  |  |
| 20-20 | WIG                                                              |  |  |  |
| 30-30 | Fishing                                                          |  |  |  |
| 31-31 | Towing                                                           |  |  |  |
| 32-32 | Towing and length of the tow exceeds 200m or breadth exceeds 25m |  |  |  |
| 33-33 | Engaged in dredging or underwater operations                     |  |  |  |
| 34-34 | Engaged in diving operations                                     |  |  |  |
| 35-35 | Engaged in military operations                                   |  |  |  |
| 36-36 | Sailing                                                          |  |  |  |
| 37-37 | Pleasure craft                                                   |  |  |  |
| 38-38 | Reserved for future use                                          |  |  |  |
| 40-49 | HSC                                                              |  |  |  |
| 50-50 | Pilot vessel                                                     |  |  |  |

| 51-51   | Search and rescue vessels                          |
|---------|----------------------------------------------------|
| 52-52   | Tugs                                               |
| 53-53   | Port tenders                                       |
| 54-54   | Vessel with anti-pollution facilities or equipment |
| 55-55   | Law enforcement vessel                             |
| 56-57   | Spare for assignments to local vessel              |
| 58-58   | Medical Transport                                  |
| 60-69   | Passenger ships                                    |
| 70-79   | Cargo ships                                        |
| 80-89   | Tankers                                            |
| 90-99   | Other types of ship                                |
| 140-140 | Reserved for regional use                          |

# Restrict Geographical Area of Interest





### Work flow

- From 200M points to a manageable list of events
- > Filter by relevance
  - Distance to MOT
  - Within specified time-window
- > Tools
  - AIS database handled in ESRI ArcGIS
  - SQL queries designed to extract data points based on select criteria
  - Some scripting (repeatable in MatLab, Mathematica, Python, R, etc.) necessary



# Vessel Types and Frequency Analysis



# First Pass Filtering: Size



# Second Pass Filtering: Proximity



### Preliminary Event List

#### > Criterion

Enforce a time constraint in order to discard any vessel passing event occurring while no vessel is moored at the MOT

### Additional steps

- Determine the minimum distance at which a passing vessel comes during each selected voyage
- Extract speed when the minimum distance is achieved.

| Speed<br>[knot] | Distance<br>[ft] | Heading<br>[deg] | Length<br>[m] | Beam<br>[m] | Туре                |
|-----------------|------------------|------------------|---------------|-------------|---------------------|
| 8               | 777.923          | 65               | 183           | 27          | Tankers             |
| 9               | 574.483          | 241              | 171           | 27          | Cargo<br>ships      |
| 6               | 482.607          | 245              | 179           | 32          | Cargo<br>ships      |
| 4               | 457.003          | 67               | 209           | 32          | Cargo<br>ships      |
| 8               | 428.595          | 64               | 154           | 26          | Cargo<br>ships      |
| 5               | 412.954          | 68               | 184           | 22          | Tankers             |
| 5               | 409.737          | 246              | 154           | 26          | Other types of ship |
| 4               | 384.658          | 63               | 183           | 32          | Tankers             |

### Monthly Design Events

#### Illustration

- Final passing vessel dataset for June 2010
- Each dot is sized according to the dimensions of the passing vessel.
  Panamax vessels, with a beam of 32 m, are highlighted in red.
- > Time-based filtering
  - Top figure Passing events occurring regardless of moored vessel conditions at the Plains terminal
  - > Bottom figure Passing events screened to match moored vessel conditions







## **Annual List of Event**



| Yearly dataset characteristics |      |  |  |  |
|--------------------------------|------|--|--|--|
| Year of record                 | 2010 |  |  |  |
| Length of record               | 69   |  |  |  |
| Large vessels                  | 69   |  |  |  |
| Panamax+                       | 22   |  |  |  |



# Joint Probability Distribution





# AIS Data a Key Component for Passing Vessel Analysis

#### > Portable

- Straightforward GIS format
- Exported data may be re-used for future risk analysis

#### > Scalable

- Scalable from small to medium sized projects
- Good geographical coverage and point density

### Comprehensive

- AIS a powerful tool for ocean management
- Provides realistic design events for passing vessel load assessments

#### > Useful

 Allows for a well-informed implementation of passing vessel load model and subsequent dynamic mooring analysis

