PREVENTION FIRST 2012 October 24, 2012

SEISMIC ISOLATION OF PIERS AND WHARVES USING LEAD-RUBBER BEARINGS

Bob Harn – Senior Project Manager | Jeff Kilborn – Project Manager

🧶 BergerABAM

Presentation Overview

- Principles of seismic isolation
- Principles of lead-rubber bearings (LRBs)
- Applications
- MOT case study
- Broadway Pier retrofit

Behavior with and without Seismic Isolation

Characteristics of a Seismic Isolation System

- Added flexibility increases period of vibration and reduces force response
- Energy dissipation (damping) controls forces and displacements
- Rigidity under service demands

Lead Rubber Bearing (LRB)

LRB Dolphin

- Batter piles are stiff and strong for service loads
- LRBs add flexibility and damping system
- LRBs capacity protect the batter piles

Uses of LRB Dolphins "Seismic Isolation" and "Drift Control"

Applications of LRB dolphins

Retrofit of existing piers

- Seismic isolation reduces base shear, protects assets
- Construction below deck
- Minimize need for new piles
- Deep water piers
 - Drift control reduces displacements, protects assets
 - LRB dolphins strengthen pier for non-seismic demands
 - Reduces number and size of required plumb piles

Previous Applications of Seismic Isolation to Piers

POLA Berth 136 Extension (1994) Sliding Friction Dampers

Puerto de Coronel Chile (2008)

Use of Seismic Isolation on Piers by BergerABAM

- Retrofit of Broadway Pier San Diego, CA (2009)
- Deep water pier (2011)
- Deep water pier with large industrial building (2011)

MOT Case Study

Solution Using 54" Diameter Plumb Piles

Solution Using 36" Piles and LRBs for Drift Control

MOT Unloading Platform Case Study Summary

54" diameter piles

- Thick heavy deck required to fix piles
- Less damping higher force
- \$ 4.0 million for unloading platform
- LRBs with 36" diameter piles
 - Thinner deck less mass
 - More damping less force
 - \$2.8 million for unloading platform

Broadway Pier Seismic Upgrade – San Diego, CA

- Owner San Diego Unified Port District
- Part of larger Broadway Pavilion project
- Completed in late 2010
- Project Team
 - BergerABAM
 - Bermello/Ajamil Partners Inc.
 - Moffatt&Nichol-Blaylock

Broadway Pier Project Overview

- Client wants new building on an aging pier
- Pier had seismic deficiencies did not meet CBC
- No permit for new piles
- Project completion date fixed
- Limited budget

Seismic Deficiencies

- Brittle batter pile connections both directions
- Insufficient ductility in plumb piles

Solution

Construction Step 1

- Install falsework
- Remove pile cover
- Install stage 1 pile cap

Construction – Step 2

- Install pipe shoring
- Cut-off existing piles
- Anchor reinforcement

Construction – Step 3

- - Complete stage 2 pile cap
 - Install LRBs
 - Complete grouting, remove shores and falsework

Summary - Applications of Seismic Isolation

Deep water Piers

- Drift control of plumb pile structures
- Reduce base shear to protect assets (buildings, equipment & utilities)

Retrofit of existing piers

- Seismic isolation
- Reduce base shear to protect assets
- Minimize impacts on operations
- Minimize number of new piles
- Questions?

