

Agenda

- About RightShip
- The Existing Vessel Design Index
- Age vs. Performance
- Practical application examples

About Rightship

- Independent company formed in Oct 2001
 - Melbourne, London & Houston
 - 200+ Customers globally
- Ship Vetting & Risk Management
 - Petroleum & Dry Cargo Vetting Service
 - Environmental Rating & CO₂ Benchmarking
- Worldwide dedicated vetting specialists
 - Former serving Masters and Chief Engineers
- Award winning proven system
 - ISO9001 and ISO27001 Certified

Part Two

The Existing Vessel Design Index

RIGHTSHIP

Framing the Opportunity

EEDI – What is it?

$$\underbrace{\left(\prod_{j=1}^{M}f_{j}\left(\sum_{i=1}^{nME}P_{ME(i)}\ C_{FME(i)}\cdot SFC_{ME(i)}\right) + \left(P_{AE}\cdot C_{FAE}\cdot SFC_{AE}*\right) + \left(\left(\prod_{j=1}^{M}f_{j}\cdot\sum_{i=1}^{nPTI}P_{PTI(i)} - \sum_{i=1}^{neff}f_{eff(i)}\cdot P_{AEeff(i)}\right)C_{FAE}\cdot SFC_{AE}\right) - \left(\sum_{i=1}^{neff}f_{eff(i)}\cdot P_{eff(i)}\cdot C_{FME}\cdot SFC_{ME}\right)}{f_{i}\cdot Capacity\cdot V_{ref}\cdot f_{w}}$$

- Energy Efficiency Design Index (EEDI)
- A formula produced by the IMO to calculate the amount of CO₂ emitted (in grams) by a vessel for every tonne of cargo carried a nautical mile based on:
 - Total engine power
 - Fuel type & specific fuel consumption
 - Cargo carrying capacity
 - Speed
- Agreed at MEPC 62 in July 2011 and comes in to force for <u>new deliveries</u> from January 2013

EVDI™ – What is it?

$$\frac{\left(\prod_{j=1}^{M}f_{j}\left(\sum_{i=1}^{nME}P_{ME(i)}\ C_{FME(i)}\cdot SFC_{ME(i)}\right) + \left(P_{AE}\cdot C_{FAE}\cdot SFC_{AE}*\right) + \left(\left(\prod_{j=1}^{M}f_{j}\cdot\sum_{i=1}^{nPTI}P_{PTI(i)} - \sum_{i=1}^{neff}f_{eff(i)}\cdot P_{AEeff(i)}\right)C_{FAE}\cdot SFC_{AE}\right) - \left(\sum_{i=1}^{neff}f_{eff(i)}\cdot P_{eff(i)}\cdot C_{FME}\cdot SFC_{ME}\right)}{f_{i}\cdot Capacity\cdot V_{ref}\cdot f_{w}}$$

- Existing Vessel Design Index (EVDI™)
- This formula produces the amount of CO₂ emitted (in grams) by a vessel for every tonne of cargo carried a nautical mile based on:
 - Total engine power
 - Fuel type & specific fuel consumption
 - Cargo carrying capacity
 - Speed
- Developed by RightShip based on the same assumption as the EEDI, this
 formula can be validly applied to <u>existing vessels</u> right now

EVDI™ – What it is not?

- Not a replacement for the EEDI
- Not a mechanism to drive retrospective legislation
- Not a measure of the vessel's operational performance
- Not going to tell you if a vessel has been designed efficiently (comparison only)

The Relative Efficiency of the Existing Fleet

Basis of Comparison

Ship Type	Basis of Size Range	Size Rating Range (Vessels)	Approximate Number of Ships
Bulk Carrier	DWT	200	11,300
Chemical Tanker	DWT	50	700
Container	TEU	200	5,300
Crude & Products Tanker (inc. OBO)	DWT	200	10,300
Cruise	GT	50	600
General Cargo	DWT	100	11,700
LNG Tanker	СВМ	50	400
LPG Tanker	СВМ	50	1,200
Refrigerated Cargo Ship	DWT	50	1,000
Vehicle	DWT	50	800

Let's Compare

Let's Compare

Age vs Performance

Bulk Carriers 75,000 - 80,000dwt vs Reference Line (1990 – 2012)

Bulk Carriers 75,000 - 80,000dwt vs Reference Line (2007– 2012)

Part Four

Practical Applications

For the Terminal

For the Ship Owner

Results so far

- Charterers
- Owners
- Terminals
- Finance companies
- Industry

Part Six

Conclusions

- Emissions of the existing fleet already form part of the decision making process
- RightShip A G Greenhouse Gas Emissions is a statistically valid means of determining relative efficiency of existing tonnage
- Promote market solutions through the logistics chain
- Welcome your feedback and input www.shippingefficiency.org

Thank You

