Evolution of HIPS & Using Risk Analysis Tools to Define SIL

(Prevention First 2012)

Steven T. Maher, PE CSP

Risk Management Professionals www.RMPCorp.com

- Evolution of Offshore Facility SMS Regulatory Requirements
- Hazards Analysis SEMS Requirements
- Key Design Guidelines
- Offshore Facility Protection Systems Evolution & Interface with Other SMS & Analysis Techniques
- References & Resources
- Questions

Evolution of Offshore Facility SMS Regulatory Requirements

How Did We Get Here?

Observations from Major Incidents Safety Management Systems Concepts

- Major Accidents have Caused Significant Loss of Life and Property, as well as Significant Indirect Costs, e.g.:
 - Business Interruption
 - Lost Confidence and Contracts
 - Increased Regulation
- Typical Characteristics of Major Accidents:
 - Relatively-Simple Precursors & Initiating Events
 - Root Causes Failure to Maintain Design Intent (first line of defense)
- MOST EFFECTIVE MECHANISM FOR IMPROVEMENT Not by Addressing Specific Actions, but by Effecting Changes in the Way Business is Done (i.e., SAFETY CULTURE & "MANAGEMENT SYSTEMS")

Evolution of SMS Guidelines & Regulations to Performance (Goal) – Based Standards

SEMS Elements

.

•

٠

•

Risk Management Professionals

- General Provisions
- Safety & Environmental Information
- Hazards Analysis
- Management of Change
- Operating Procedures
 - Safe Work Practices
 - Training
 - Mechanical Integrity
 - Pre-Startup Review
- Emergency Response & Control
- Investigation of Incidents
- Audit of SEMS Elements
- Records & Documentation
- Employee Participation
- Contractor Safety

Hazards Analysis SEMS Requirements

§250.1911 General Clarifications

- Offshore Facility Definition
 - All Types of Offshore Structures Permanently or Temporarily Attached to the Seabed (i.e., Mobile Offshore Drilling Units; Floating Production Systems; Floating Production, Storage and Offloading Facilities; Tension-leg Platforms; and Spars)
 - DOI-Regulated Pipelines
- Two Types of HA Requirements
 - Facility-Level Hazards Analysis
 - Job Safety Analysis (operations/task level)

§250.1911 General Clarifications

- Analysis & documentation must be maintained for the life of the operation of the facility.
- Applicability to similar systems/processes is allowable.
- HA must be completed by 15Nov11.
- HA must be periodically updated and at the same time as compliance audit performance – At 3-year Intervals Starting on the Second Year After Initial SEMS Program Completion
- JSA must be completed/approved "prior to the commencement of the work."

Facility-Level HA Techniques

- §250.1911(a) "... must be appropriate to the complexity of the operation and must identify, evaluate, and manage the hazards involved in the operation."
- API RP 14J identifies the following methods as acceptable:
 - What-If
 - Checklist
 - Hazard and Operability (HAZOP) Study
 - Failure Modes and Effects Analysis (FMEA)
 - Fault Tree Analysis
 - An Appropriate Equivalent Methodology

Effective applications capitalize on the unique characteristics of these methods.

Facility-Level HA Techniques

- The HA shall address:
 - Hazards of the process/operation
 - Previous incidents
 - Engineering and administrative controls
 - Qualitative evaluation of consequences (safety/health, human/marine environments, equipment) of failure of controls
 - Human factors (also addressed via JSA)
- System to promptly address Team findings & recommendations
- Other Objectives QUALITY

Facility-Level HA Team

- The Team must be made up of representatives from:
 - Engineering
 - Operations
 - Other specialties, as needed
- and must include:
 - Person with experience & knowledge specific to the process being evaluated
 - Person with experience & knowledge in the HA methodology

Key Design Guidelines

API RP 14C/14J Overview

- API RP 14C "Analysis, Design, Installation, and Testing of Basic Surface Safety Systems for Offshore Production Platforms"
- Representative Safety System Designs
 - Component Configurations
 - Process Flow Diagrams
 - P&IDs
 - Alarm Features
 - Associated Safety Analysis Checklist
- Safety Analysis Methods & Development of SAFE Charts
- API RP 14J "Design and Hazards Analysis for Offshore Production Facilities"
- Details for Support of Two Critical SEMP Elements
 - Safety & Environmental Information
 - Hazard Analysis
- Identification of Good Design Practices
- Primary Applicability Offshore Production Facilities and Production Processing Systems of Mobile Offshore Units

IEC 61508/61511 Overview

- IEC 61508 "Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems"
- Provides a Risk-Framework for the Identification of Hazards
- Risk Analysis Using the "Familiar" Likelihood/Severity/Risk-Ranking
- Defines Safety Integrity Level
- IEC 61511 "Functional Safety Safety Instrumented Systems for the Process Industry Sector"
- Focus on Safety Instrumented Systems (SIS)
 - Electrical, Electronic, and Programmable Electronic Equipment
 - Electronic Logic Solvers
 - Also Addresses Pneumatic or Hydraulic Systems to Manipulate Final Elements
- Primary Applicability Process Industries
- Key Elements
 - Requirements
 - Application Guidelines
 - SIL Determination
- Stresses the Importance of a Management System

Offshore Facility Protection Systems Evolution & Interface with Other SMS and Analysis Techniques

Focusing on the Objective (The "Big Picture")

Increasing Consequences

- RISK = PROBABILITY * CONSEQUENCES
 - Probability = Likelihood of Occurrence
 - Consequences =
 Effects of
 Occurrence
- For Engineered Systems:
 - Risk = $\Sigma P_i * C_i$

Risk/SIL Ranking

Tandem Advances in Protection System Design Architectures & Analysis

Safety Instrumented Systems (SIS)

- Concept
 - Diversity
 - Redundancy
 - Separation

Objectives

- Highly reliable safety features should have a low Probability of Failure on Demand (PFD)
- Ensure that the likelihood of high/medium consequence events have an acceptably low risk contribution.

Design Guidelines

- 1996 ANSI/ISA S84.01 (United States)
- 2004 ANSI/ISA S84.00.01 (United States)
- 1999 IEC 61508-1 (International)
- 2004 IEC 61511-1 (International)
- Safety Integrity Level (SIL) Measure of SIS reliability

R Risk Management Professionals

Layer of Protection Analysis (LOPA)

• LOPA was created as a bridge between a detailed QRA and HAZOP.

 LOPA uses relatively standard initiating cause frequencies and independent protection layer PFDs to keep the analysis simple, but to yield quantitative results.

LOPA Ratio Calculation

- LOPA is a subset of the QRA Framework; however, it has its own set of acronyms and terminology to focus the analysis:
 - IC Initiating Cause (i.e., Initiating Event)
 - ICL Initiating Cause Likelihood (Frequency)
 - IPL Independent Protection Layer
 - PFD Probability of Failure on Demand
 - TF Target Frequency
 - VF Vulnerability Factor Conditional Modifiers

 $LOPA \ Ratio \ (Safety) = \frac{TF_{Safety}}{ICL * PFD_1 * PFD_2 * PFD_3 ... * VFi * VFp}$

Using LOPA Results

- Calculated LOPA Ratio is the primary decision-making basis.
 - To meet safety targets, if no SIS features exist, adjust BPCS to increase the LOPA Ratio to be ≥ 1 or add SIS feature.
 - To determine SIS pedigree, safety targets may be achieved by assigning SIL Allocation Target (see previous SIL Matrix).
 - Related integrity levels for environmental (EIL) and commercial (CIL) issues can be defined.

LOPA Ratio (w/o SIS)	SIL
10 ⁻⁰ - 10 ⁻¹	No special integrity requirements
10 ⁻¹ - 10 ⁻²	SIL 1
10 ⁻² - 10 ⁻³	SIL 2
10 ⁻³ - 10 ⁻⁴	SIL 3

LOPA Summary

- LOPA utilizes a simplified quantification process to:
 - Determine if risk targets are met (e.g., acceptability of high-risk scenarios.
 - Determine adequacy of BPCS and SIS/HIPS protection features.
 - Compare the benefit-cost associated with improvements.
 - Identify if risk targets can be achieved with BPCS rather than SIS/HIPS.
 - Determine SIL Allocation Target for SIS/HIPS features.
- Implementation
 - Initial LOPA during HAZOP Study can reinforce SIL.
 - More-detailed LOPA can provide a more formal basis for scenario risk and needed SIS/HIPS SIL.

Simple SIS/LOPA Example

2-50% capacity relief valves exist on downstream LP vessel.

Risk Management Professionals

LOPA Ratio Calculation Details

IC	Chain of Events (Consequences)	IPL 1	IPL 2
LV-1 malfunctions open, possibly due to a failure of LT/LIC-1, or bypass valve inadvertently open.	Gas blow-by resulting in overpressurization of downstream equipment and resultant release of hydrocarbons and H2S, Potential for severe injury or fatality.	LAL-1, if LT/LIC-1 is not the cause of the malfunction.	2-50% capacity relief valves on downstream LP vessel
0.1/yr			2*0.01/demand
Scenario Frequency = 0.1/yr * 2*0.01/demand			

Vulnerability Factor = 0.5 (People are present in the hazard zone for less than 12 hours/day.)

Target Frequency = 1X10⁻⁵/yr

Departure From Target (LOPA Ratio) = 0.01

Conclusions: Need a factor of 100 improvement in safeguard reliability, e.g.:

- Installing a separate emergency isolation valve fed by an independent level transmitter (if SIS, SIL 2) target)
- Reconfiguring LV-1 to include a separate SIS closure feature (SIL 2)

Hazards Analysis Tool Spectrum **Allows Risk** Each of these tools provides a Quantification different perspective & different insights. **Bow-tie** LOPA HAZID **JSA API RP 14C** What-If/ **ETA** Review Checklist **FTA FMECA** HAZOP Checklist What-If **Less Effort** Increased Effort, with Increased Insights **R**[®]**P** Risk Management Professionals

References & Resources

Recent Webinars in Offshore Facility Process Safety Series

- July 22, 2010 Offshore Facility Process Safety Overview (Risk Management Professionals + Guest Speaker, Mark Steinhilber)
- September 14, 2010 Effective Creation & Appropriate Application of Safety Cases (Risk Management Professionals + Guest Speaker, Ian Sutton)
- October 14, 2010 Offshore Facility Process Safety Systems Overview (SEMS – A New Paradigm)
- November 18, 2010 SEMS Update and HAZOP Study, LOPA, & SIL Assessment Integration Made Easy
- December 14, 2010 Practical SEMS Mechanical Integrity (MI) Program Implementation
- January 12, 2011 SEMS Update, Hazards Analysis Basics, and Practical Approaches
- March 3, 2011 Safety & Environmental Information Tips (Including Quality P&IDs)
- March 8, 2011 Paradigm Shift in the Regulatory Application of SMS
 Risk Management Professionals

Recent Webinars in Offshore Facility Process Safety Series

- May 5, 2011 Sensible Operating Procedures for Offshore Facilities
- June 2, 2011 Application of Bow-tie Analysis to Offshore Facilities
- June 7, 2011 Practical Approaches to Implementing Management of Change and Pre-Startup Reviews for Offshore Facilities
- July 21, 2011 SEMS Program Elements, Audit Requirements, Practical Approaches, Gap Analysis, and Audit Tips
- October 18, 2011 SEMS Program Elements, Hazards Analysis Basics, and Practical Approaches
- October 27, 2011 Practical SEMS Mechanical Integrity (MI) Program Implementation
- December 8, 2011 Practical SEMS Implementation, Auditing Techniques and Gap Analysis
- June 12, 2012 Contractors and Operations The SEMS Rule
- September 6, 2012 Paradigm Shift in the Regulatory Application of SMS to Offshore Facilities

R Risk Management Professionals

Other Resources

- <u>www.BSEE.gov</u> Bureau of Safety and Environmental Enforcement
- <u>www.RMPCorp.com</u> RMP Home Site with Offshore Facility SEMS Series & Other Training Tracts
- <u>www.SEMS-Solution.com</u> Broad-Spectrum SEMS-compliance Software System
- <u>www.CenterforOffshoreSafety.org</u> Center for Offshore Safety
- <u>www.oilspillcommission.gov</u> National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling
- <u>www.API.org</u> American Petroleum Institute Publications & Recommended Practices

Questions?

Steven T. Maher, PE CSP

Steve.Maher@RMPCorp.com

877/532-0806 www.RMPCorp.com

Risk Management Professionals