

Osbaldo Chavez, Training Dept. Mgr., Technical Sales Rep., Clock Spring Company, L.P.

Chad Edinger, General Manager, NuStar Energy, West Region

Evolution of Clock Spring®

SPRING

- In 1963 Amoco pioneered the use of composites for underground storage tanks using a polyester resin/e-glass system
 - In 1970's the fireman's breathing apparatus and the Natural Gas Vehicle Storage tanks were developed by NCF Industries

NuStar

2

Composite History in Pipelines

- In 1986 NCF
 Industries
 developed Clock
 Spring
- Designed for arresting cracks in high pressure gas pipelines

Original Clock Spring®

4

Original Clock Spring®

□Bonded In Place with Fast-**Curing Methacrylate** Adhesive² □High-Modulus Filler³ □Unique Composite. □Layers.¹ □Simple Application leads to **Cost Savings and Ensures** Reliability □A composite sleeve was created

- □ 10-Year Research Program Started in 1987
- Goal: Find a Non-Intrusive Alternative to Steel Sleeves
- □ Steering Committee of Pipeline Experts from Academia & Industry
- □ Program Design Called for a Battery of Lab & Field Studies
- Complete Test Reports Available
- Commercially Available since 1993
- □ 50-Year Minimum Working Life

Sixty-Nine Units Installed

See GRI 98/0027 and GRI 98/0032 for complete reports

NuStai

Stress Rupture Testing

SEE GRI 95-0071 for complete test report

Woven Cloth

- Used in the first Clock Spring®
- Only 50% of the glass is in the load direction
- Problems with cyclical loads
- Good for low pressure
- (< 500 psi) applications
- Under cyclical loads
 - Fibers move and chaff
 - Diminished strength
 - Long term performance difficult to predict

Be careful of woven cloth for reinforcement of cyclical loads.

NuStar

Unidirectional Glass

□Saturation of fibers is consistent

- □100% of the load carrying fibers are in the hoop direction
- Fibers will not chafe or cut one another during cyclical loading

Clock Spring® History

- Originally Designed as a Crack Arrestor
 Metal Loss Repairs Validated by Full-Scale Burst Tests
- Extensive R&D Reports Submitted to
 - Regulators
- □20 Year Commercial History of Permanent Repairs
- □Over 1 Million Years of Total, Cumulative

Repair Service

Application Method

2. Position the Clock Spring and mark position around pipe

5. Apply adhesive to Pipe Surface

10. Re-coat and backfill - Coal Tar O.K. after Cure (2+ hrs and 40 on a Shore A scale)

NuStar

Pipe Details						Operating Details							
utside diameter (Dia)	10.75	5 inches	2		Opera	atina n	ressu	e (Po	\		12	00 nsi
all thickness (t)	510.)	0.250) inches			Class	Locat	tion	1	/ Desid	in Fac	tor	0.72
ade (SMYS)		5200	52000 psi			Temp.Factor (TF)			1	Joint Factor (JF)			1
				Def	ect	Deta	ails		_			<u> </u>	
efect depth		0.180) inches	6		Defec	t iden	tificatio	on	Line a	<mark># 1008</mark>	3	
efect length		20.00) inches	5		Data	Dig #	2	Osta	04	2012		
epth as % of wall		12%		240		Date			Octo	ber 24	, 2012		
			В.	31G	Ass	sess	smei	ητ					
laximum allowabl	e pressi	ire (P) (N		174 ⁻	1 psi		$\mathbf{P} = 0$	2*SM	YS*t)/	Dia.)*I	DE*TE*	*JF	
afe operating pres	sure (F	s)	/	536	6 psi				/*				
		-											
t the operating pr	essure	Po) spec	ified the	e maxi	mum	length	n for th	ne dep	th spe	cified	4.850	inche	es.
t the operating pro	essure	Po) spec	ified the	e maxi	mum	depth	for th	e leng	th spe	cified	i 0.09 3	inche	es.
			Cloc	ck Sp	orinç	g® A	Analy	ysis					
ristine vield press	ure of t		Cloc	ck Sp	241	g® /	Analy	ysis Pvo		Pvo	= (2*S	MYS*	t)/Dia
ristine yield press ailure pressure of	ure of t the reir	ne pipe. forced pi		ck Sr	241	g® / 9 psi 35 psi	Analy	ysis Pyo Prf		Pyo	= (2*S	MYS*	t)/Dia.
ristine yield press ailure pressure of einforced failure to	ure of t the reir pristin	ne pipe. forced pi e yield ra	Cloc pe.	<u>ck Sr</u>	241 258 1.0	9 psi 9 psi 5 psi 7	Analy	ysis Pyo Prf		Pyo :	= (2*S	MYS*	t)/Dia.
ristine yield press ailure pressure of einforced failure to efect profile factor	ure of t the reir p pristin	ne pipe. forced pi e yield ra	Cloc pe. atio.	<u>ck Sr</u>	241 258 1.0	9 psi 9 psi 35 psi 07	Analy	Pyo Prf		Pyo :	= (2*S	MYS*	t)/Dia.
istine yield press ailure pressure of einforced failure to efect profile facto	ure of t the reir pristin	ne pipe. forced pi e yield ra Cloc	Cloc pe. atio. k Spr	ck Sp	241 258 1.0 1 0 rep	9 psi 9 psi 5 psi 7 07	Analy - - s ac	Pyo Prf	table	Pyo :	= (2*S	MYS*	t)/Dia.
ristine yield press ailure pressure of einforced failure to efect profile facto	ure of t the reir p pristin	ne pipe. forced pij e yield ra Cloc	Cloc pe. atio. k Spr	ck Sp	241 258 1.0 1 rep	g® A 9 psi 35 psi 07 0air i	Analy - s ac	Pyo Prf ccep	table	Pyo :	= (2*S in calc	MYS*	t)/Dia.
ristine yield press ailure pressure of einforced failure to efect profile facto	ure of t the reir p pristin Clo	ne pipe. forced pij e yield ra Cloc	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 0 rep	9 psi 35 psi 57	Analy - s ac	Pyo Prf CCCP Failure	table ′alues	Pyo =	= (2*S in calc	MYS*	t)/Dia. m. - 20 ksi
ristine yield press ailure pressure of einforced failure to efect profile facto	ure of t the reir p pristin Clo	ne pipe. forced pij e yield ra Cloc ck Sprir	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 p rep	9 psi 35 psi 37 Dair i	Analy - s ac	ysis Pyo Prf Cep V Failure Modulu	table ′alues stress	Pyo : D. used of the	= (2*S in calc Clock S Spring	MYS* culatio pring® ®-5 × ²	t)/Dia. m. - 20 ksi 10 ⁶ psi
ristine yield press ailure pressure of einforced failure to efect profile facto 3000	cure of t the reir p pristin Clo	ne pipe. forced pij e yield ra Cloc ck Sprir	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 57 07	Analy - s ac	ysis Pyo Prf CCP Failure Modulu Modulu	table falues stress as of th	Pyo : Used of the e Clock e pipe -	= (2*S in calc Clock S Spring 30 × 10	MYS* culatio pring® ® - 5 x [°]	t)/Dia. on. - 20 ksi 10 ⁶ psi
ristine yield press ailure pressure of einforced failure to efect profile facto 3000 2500	cure of t the reir p pristin	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 07 0air i	Analy - s ac	ysis Pyo Prf CCP Failure Modulu Wrap t	table 'alues stress as of th his of th	Pyo : used of the e Clock e pipe - ss - 0.0	= (2*S in calc Clock S Spring 30 x 10 625 inc	MYS* culatio pring® ®-5x' ⁶ psi hes.	t)/Dia. on. - 20 ksi 10 ⁶ psi
ristine yield press ailure pressure of einforced failure to efect profile factor 3000 2500 2000	Clo	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 07 0air i	Analy - s ac	ysis Pyo Prf CCP Failure Modulu Wrap t Numbe	table stress sof th is of th hickness r of wi	Pyo = used of the e Clock e pipe - ss - 0.0 raps -	= (2*S in calc Clock S Spring 30 x 10 625 inc 8	MYS* culatio pring® ®-5x [°] ⁶ psi hes.	t)/Dia. on. - 20 ksi 10 ⁶ psi
ristine yield press ailure pressure of einforced failure to efect profile factor 3000 2500 2000 1500	Clo	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 07 0air i	Analy - s ac	ysis Pyo Prf CCP Failure Modulu Wrap t Numbe Thickn	table stress sof th sof th hickness of of wi ess of	Pyo = used of the e Clock e pipe - ss - 0.0 raps - repair -	= (2*S in calc Clock S Spring 30 x 10 625 inc 8 0.500	MYS* culatio pring® ®-5x' ⁶ psi hes. inches	t)/Dia. on. - 20 ksi 10 ⁶ psi
ristine yield press ailure pressure of einforced failure to efect profile facto 3000 2500 1500 1000	Clo	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 57 07	Analy - s ac	ysis Pyo Prf CCP Failure Modulu Wrap t Numbe Thickn Defect	table stress sof th hickness of th hickness of circun	Pyo : used of the e Clock e pipe - ss - 0.0 raps - repair - ferentia	= (2*S in calc Clock S Spring 30 x 10 625 inc 8 0.500 al exten	MYS* culatio pring® ® - 5 x ⁷ ⁶ psi hes. inches t - 100 ⁶	t)/Dia. on. - 20 ksi 10 ⁶ psi %
ristine yield press ailure pressure of einforced failure to efect profile factor 3000 2500 1500 1000	Clo	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 57 07	Analy - s ac	ysis Pyo Prf CCCP V Failure Modulu Wrap t Numbe Thickn Defect	table stress as of th hickness of circun	Pyo : used of the e Clock e pipe - ss - 0.0 raps - repair - nferentia	= (2*S in calc Clock S Spring 30 x 10 625 inc 8 0.500 al exten	MYS* culatio pring® ® - 5 x ⁻¹⁶ psi hes. inches t - 100 ^c	t)/Dia. on. - 20 ksi 10 ⁶ psi %
ristine yield press ailure pressure of einforced failure to efect profile factor 3000 2500 1500 1000 500	Clo	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. atio. k Spr	ing®	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 07 0air i	Analy - s ac	ysis Pyo Prf CCCP V Failure Modulu Wrap t Numbe Thickn Defect	table 'alues stress as of th hickness of th circun Open	Pyo : used of the e Clock e pipe - ss - 0.0 raps - repair - nferentia	= (2*S in calc Clock S Spring 30 x 10 625 inc 8 0.500 al exten	MYS* culatio pring® 8 - 5 x ⁷ ⁶ psi hes. inches t - 100 ⁶ re.	t)/Dia. on. - 20 ksi 10 ⁶ psi %.
ristine yield press ailure pressure of einforced failure to efect profile factor 3000 2500 1500 1000 500	Clo	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. atio. k Spr	ing® alysis	241 258 1.0 1 9 rep	g® A 9 psi 55 psi 07 0air i	Analy - s ac	YSIS Pyo Prf CCEP V Failure Modulu Wrap t Numbe Thickn Defect	table 'alues stress as of th hickness of th circun Open Reinf Pristi	Pyo = used of the e Clock e pipe - ss - 0.0 raps - repair - ferentia ating p forced ne vie	= (2*S in calc Clock S Spring 30 x 10 625 inc 8 0.500 al exten failure failure	MYS* culatio pring® B - 5 x' ⁶ psi hes. inches t - 100° re. press sure	t)/Dia. on. - 20 ksi 10 ⁶ psi %.
ristine yield press ailure pressure of einforced failure to efect profile facto 3000 2500 2000 1500 1000 500	Clo Po	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. ttio. k Spr ng® An	ing® alysis	241 258 1.0 1 9 rep	9 psi 5 psi 5 psi 7 0air i	Analy - s ac	ysis Pyo Prf CCCP V Failure Modulu Wrap t Numbe Thickn Defect Po - Prf - Pyo -	table alues stress softh hickness of th hickness of th ess of circun Open Reinf Pristi	Pyo = used of the e Clock e pipe - ss - 0.0 raps - repair - ferentia ating p orced ne yie in pres	= (2*S in calc Clock S Spring 30 x 10 625 incl 8 0.500 al exten failure Id pres	MYS* culatio pring@ B - 5 x' ⁶ psi hes. inches t - 100° re. press ssure. MAO	t)/Dia. on. - 20 ksi 10 ⁶ psi % ure.
ristine yield press ailure pressure of einforced failure to efect profile facto 3000 2500 1500 1000 500	Clo Po	ne pipe. forced pij e yield ra Cloc ock Sprin	Cloc pe. tio. k Spr ng® An	ing® alysis	241 258 1.0 1 9 rep	9 psi 5 psi 5 psi 7 0air i	Analy - s ac	ysis Pyo Prf CCCP V Failure Modulu Wrap t Numbe Thickn Defect Po - Prf - Pyo - Pyo - Pyo - Pyo -	table alues stress sof th hickness of th hickness of th circun Open Reinf Pristi Safe	Pyo = used of the e Clock e pipe - ss - 0.0 raps - repair - ferentia ating p orced ne yie operat	= (2*S in calc Clock S Spring 30 x 10 625 incl 8 0.500 al exten failure Id pres sure (ing pre	MYS* culatio pring@ B - 5 x' ⁶ psi hes. inches t - 100° re. press ssure. MAOI essure	t)/Dia. - 20 ksi 10 ⁶ psi % ure. P) ≥ (B31(

Case Study One-NuStar Terminal Overview

NuStar

□ Terminal Overview

- Port of Los Angeles-NuStar Energy Terminal
 - ≻ 607,000 bbls of storage capacity
 - Marine receipt/delivery across multiple 6, 8, 10, 12 inch dock pipelines
 - Multiple product grades handled and isolated by line for product quality purposes
 - ➢ Facility handles ~30 barges or vessels per month
 - Wharf downtime of any kind would become critical path to customer base
 - Wharf and associated piping are slated to be significantly modified as a result of MOTEMS seismic evaluation
 - Repair strategy utilized established corrosion rates to allow for a safe amount of remaining thickness; considering the useful life of the wharf

□ Challenging Maintenance Scenario

- Regulatory inspection requirements and associated repair strategies
 - Pipes suspended beneath the decking of a timber pile structure via full encirclement split clamp hung with all-thread from timbers
 - Access to repair sites can be challenging due access through timber cross-members depending on changing tidal conditions
- API 570, API 2611, DOT, PSM Process Piping Inspection/Repair Criteria
 - Depending on regulatory driver or repair strategy, the requisite training/application requirements for installer and the qualifications for that installation may be critical path to complete in a timely manner
 - DOT involvement and Operator Qualifications
 - Approved contractors based on company policy
 - Availability of capable and qualified contractors

□ Recent Example at NuStar Terminal

- API 570 inspection revealed areas of significant external corrosion on uncoated pipe with as little as .10" remaining thickness
- Based on established corrosion rates, some areas only required external coating to mitigate future corrosion
- Areas under pipe clamps were unknown and were not able to be inspected with UT
 - Pipe to clamp areas were known not to have a nonconductive material between pipe and steel support
 - Dissimilar metals creates a known corrosion cell in the marine environment where moisture is trapped
 - These areas were treated as unknowns and were to be inspected separately with the proper precautions

□Two Part Strategy to exposed pipe repair

- Depending on site-specific corrosion, either prep and externally coat, or
- In the areas of exposed piping (away from pipe supports), "Snap-Wrap" Clockspring© materials were chosen as final mitigations
- □Majority of piping had majority of original thickness and could be coating as the full mitigation
- □Isolated areas required clockspring repairs; generally as a result of improper support-to-pipe buffer material
 - Generally in areas of trapped water to pipe
 - Dissimilar metal to metal contact

Pipe Support Repair Strategy

- Original plan was to support, remove clamps, UT, then repair similar to the exposed pipe depending on the RT under the pipe support
- No evidence or history of leak or weep on the pipe or support
- Alternative was to construct new transfer line and to demo existing.

❑ Why we choose non-metallic repairs versus fullencirclement sleeves?

- Hot work-need to de-product the line and risk to the surrounding environment
- Prep work for sleeves includes significant downtime
- The finished product with non-metallic repair has built-in corrosion resistance
- Biggest issue-spill risk if breaking flanges torching, cutting
- Time line is considerably shorter
- Finished product has equal strength & integrity as original pipe

Product Options Available

Low Pressure Pipe Repair - up to 500psi

NuStar

Clock Spring® Snap Wrap

Pre-Fabricated Bi-Directional Sleeves 3/4" to 56"
4 Layer System
3" minimal clearance is required
Up to 90% Wall Loss
2hr Cure Time on Adhesive

Crevice Corrosion

□360°Protection at Contact Points

Clock Spring® Pipe Support

Pre-Fabricated Bi-Directional Sleeves from 3/4" to 56"
3 Layer System
Bonded 360° for Protection at Contact Points
2hr Cure Time on Adhesive

Clock Spring® Pipe Support

Corrosion is a Leading Cause of Piping Failures
Water Entrapment, Disbondment, Coating Failure
360° Encirclement by Clock Spring® Pipe Support offers Maximum Protection at Contact Points
Design Works with Virtually Any Support Type
Fast, Easy Installation

Application

Pipe Repair - up to 1000 psi.

CONTOUR®

- □Wet Lay Up System 1" to 36"
 - Repairs: Straight Pipe, Tees, Bends & Flanges
- □Up to 1000psi on corrosion type defects
- □Leaks are temporary up to 350psi
- □ 6-10hr Cure Time on Oil Base Epoxy

Elbows & Connections

Bends & Reducer

Clock Spring® Today

- □Clock Spring began Commercial Operations in 1993
- □Today: Sales in Over 75 Countries
- □Over 1 Million Years of Cumulative Repair Service
- □Clock Spring is Successful Because:
 - Technically Sound Product
 - Economically Advantageous
 - Trouble-Free

Questions?

□Chad.Edinger@nustarenergy.com

□ Ochavez@Clockspring.com

