Integrating Applied Technology in the Design and Installation of a Solar Powered, Wireless Tank Control System

Jeff Hall, B.S.I.T.
Senior Project Manager
Kern County Oil Processing Facility Expansion

- Independent Start-Up Oil Company
 - Limited Engineering and Project Management Capability
- InterAct Technical Solution Provider

Problem

- Prevent Water Tank Overflow on 24/7 basis with 8/5 Operation

Solution

- Design and install a remote, self-contained tank monitoring and water control system
Statement of Work

➢ Objectives
 ➢ Integrate Process Logic Control (PLC) with low voltage, solar powered, tank and pump controls to maintain equilibrium in a water disposal tank.
 ➢ Remote alarm notification to operators via cell phone, prior to well pump shut down.

➢ Deliverables
 ➢ Process and Instrument Diagram (P&ID)
 ➢ Electrical Load Calculations (kW/Day)
 ➢ Control Logic Spreadsheet
 ➢ Component Specification
 ➢ Purchasing Budget
 ➢ Implementation Schedule
 ➢ Operation Manual
Wireless Control Research

- **Existing Wireless Instrument Systems**
 - Wireless 900 MHz radio telemetry is predominant for linking remote pumps and tanks in water distribution systems.

- **Applications**
 - Municipal Water & Wastewater
 - Reservoir Control
 - Oil & Gas Waste Disposal

- **Features & Specs**
 - License-free 900 MHz
 - 20 Mile Range
 - Analog and Digital I/O
 - 10 to 28 VDC Power
Wireless Communication Research

- **Cellular Service Option**
 - Remote location did not offer reliable cell phone service for notifying operators of water tank alarm levels.

- **Satellite Internet Service**
 - Utilize existing satellite service to access Internet and send Short Message Service (SMS) text message to operators cell phone.

- **Ethernet Modem**
 - Wireless 2.4 GHz telemetry provides local area network (LAN) connection between tank control PLC and field office PC.

- **Features & Specs**
 - 802.11b WiFi Compliant
 - Range 6 miles Line of Sight
 - Data Encryption
Tank Control Topology

- **FUEL GAS SHUTDOWN**
 - PLC REMOTE
 - NV SRM 6000 SERIAL MODEM SLAVE
 - NV SRM 6000 SERIAL MODEM MASTER
 - DL FLCL 810E+ ETHERNET MODEM SLAVE
 - DL FLCL 810E+ ETHERNET MODEM MASTER
 - PLC MAIN
 - MAIN WATER TANK
 - ISP
 - ROUTER SWITCH

- **INTERNET SATELLITE**
 - DISH
 - SATELLITE MODEM
 - CAT-6 ETHERNET CABLE
 - 2.4 GHz

- **OFFICE PC INTERNET ACCESS**
 - PLD 810E+ ETHERNET MODEM MASTER
 - CAT-6 ETHERNET CABLE

- **HIGH LEVEL**

- **TEXT MSG** "MAIN TANK HIGH LEVEL"

- **TANK CONTROL TOPOLOGY**

- **TANK CONTROL TOPOLOGY**
Process Logic Control Research

- **Rockwell Automation by Allen Bradley**
 - Expensive component cost and education requirements to develop control logic lead to research cost effective PLC solution

- **Lab VIEW by National Instruments**
 - Competitive hardware cost with low power consumption
 - Graphic based, drag and drop style programming
 - Sales Engineering Support
Power Consumption Calculations

Main Tank System
- 24 Amp/Hr/Day (24Watts @ 24Vdc = 1 Amp x 24Hr)
 - Controller 6.1 W
 - Relay 3.0 W
 - I/O Module 0.5 W
 - 900 MHz Modem 4.8 W
 - 2.4 GHZ Modem 4.8 W
 - Level Transmitter 3.6 W

Remote Stations
- 18 Amp/Hr/Day (9 Watts @ 12Vdc = .75 Amp x 24 Hr)
 - Modem 4.8 W
 - RS 232 Module 1.0 W
 - 422 Relay 1.75 W
 - Solenoid (10% Duty) 1.0 W
Solar Power System Research

- **OKSolar.com**
 - Limited Configuration Information
 - Limited Load Configurations
 - 2.5A 24 Vdc system cost $2,250
 - 50A 24 Vdc system cost $22,500

- **SunWize Technologies**
 - Global Insolation map to calculate peak winter sun hours based on latitude and longitude
 - Fully integrated power supply and battery for 99.9% reliability
 - Multiple web-based configuration options
 - 12V, 120 Amp/hr system $1,997
 - 24V, 252 Amp/hr system $5,767
Tank Control System Installation

- Solar Powered Tank Monitoring System
 - Monitors water level and controls pump speed to maintain setpoint
 - Shuts down fuel gas to wells at high water alarm levels

Wiring the Ultrasonic Level Transmitter for Calibration

LabVIEW PLC with Wireless Modems for Communication
Process Logic Control Requirements

- Variable Set-Points with PLC Control Functions
 - Low Alarm Level
 - Shut down all injection pumps
 - Turn on Yellow and Red Flashing Lights
 - Low & High Warning Levels
 - Send SMS text message to operator cell phone
 - Turn on Yellow Flashing Light
 - Low Pump Limit Level
 - Switch injection pump speed to SLOW
 - High Pump Limit Level
 - Switch injection pump speed to FAST
 - High Alarm Level
 - Shutdown #1 remote fuel gas valve and stop (12) wells
 - Turn on Yellow and Red Flashing Lights
 - High-High Alarm Level
 - Shutdown #2 remote fuel gas valve to stop (12) additional wells
 - Turn on Yellow and Red Flashing Lights
Tank Level Control System

- **PLC Pump Speed Control**
 - User defined setpoint for low and high engine speed
 - PLC controls Murphy throttle positioner
 - Maintains tank level within 2 ft hysteresis

Main Panel with SunWize 24VDC Solar Array

10,000 bbl Water Tank

Graphic User Interface

Water Injection Engines with PLC Speed Control
Remote Fuel Control System

- **Wireless Communication**
 - Main panel sends shutdown signal to remote panels
 - Remote Panels are 12VDC solar powered
 - Control valves use supply gas to operate

![Remote Panel behind Fuel Gas Shutdown Station](image1)

Main Panel with SunWize 24VDC Solar Array

![Fuel Gas Valves](image2)
Tank Control System GUI

- Remote Process Monitoring
 - Graphic User Interface via PC link to PLC provides real-time process monitoring at the facility and remote locations with Internet access.

Compressors

Oil Tanks

Text Msg Control

InterAct
Tank Control System

Wireless Expansion Capability
- Wireless Level Transmitters added to Baker Tanks for high level warning and fuel gas shutdown.
- 900 MHz Radio with 25 mile range
System Integration

Integration Role

• **Mechanical Design**
 - Fuel gas shutdown with field installation

• **Electrical Design**
 - Process control with functional testing

• **Structural Design**
 - Seismic and static loads for solar panel mounts

• **Customer Criteria**
 - Process alarms and response with PLC programmer
System Commissioning

- Solar Arrays
 - Verified for mechanical and electrical integrity

- Wireless communication systems
 - Checked for proper configuration

- Remote PC
 - Configured for Internet access

- Remote fuel gas valves
 - Tested or fail-closed operation
System Troubleshooting

Electrical-Main Panel
- **Problem** - No 24 Vdc at the PLC and no 12 Vdc at the modems
- **Cause** – 24 Vdc power polarity was reversed at the incoming leads
- **Solution** – Reverse the leads and replace the fuse on the 24-12 volt power supply

Wireless Communication
- **Problem** – 2.4 GHz Modems between PLC and PC were not providing stable link.
 - **Initial Solution** – Assign static IP addresses to both modems and re-configure antennas
 - **Final Solution** - Send modems back to factory for testing and replacement
System Troubleshooting

- **SMS Text Message Failure**
 - **Problem** – PC in the field office unable to send SMS via satellite Internet server due to SSL coding requirement
 - **Solution** – Add programming module to software to encode SMS text with SSL code

- **Fuel Gas Shutdown Operation**
 - **Problem** – Spring Return actuator only opened 50% when gas is applied to actuator due to vendor failure to configure the actuator to meet design specifications
 - **Solution** – Remove several springs inside the actuator to reduce the torque required to open the valve.
Lessons Learned

Communication
• Sub-Contractor project management added additional layer of communication
• Schedule regular team meetings to review project scope and methods to achieve design intent

Scope
• Production requests for additional capability after scope approval.
• Involve all personnel when defining the scope of work and allow for future expansion

Critical Path
• Minor unidentified tasks can dictate the critical path
• Identify all tasks using a timeline (MS Project) with frequent updates to identify potential schedule impacts before the scheduled completion date

Cost Control
• Fixed price quotations evaluation with low cost priority can result in equipment that does not meet customer specifications.
• All RFQ’s need to be written to cover all details with specifications for FAT’s to be performed prior to delivery.
Acknowledgements:
Orchard Petroleum, Belridge Facility
Cal-Bay Systems, Software Development
National Instruments, PLC Hardware
Thomas & Beers, Structural Engineering
Sun-Wize Technologies, Solar System
CSUF, Industrial Technology Department