

Nonlinear Analyses Implementation

Alex Augustin, Assistant Civil Engineer, California State Lands Commission and Marc Percher, P.E., Senior Engineer, Halcrow, Inc.

October 19-20, 2010

Agenda

Background

Displacement vs. Force based design

Current Methodology in MOTEMS

- Substitute Structure
- Substitute Structure Grey areas
- MOTEMS Improvements
- Critical Items

Future MOTEMS

- Chopra-Goel method: Demand-Capacity Procedure
- Sensitivity Study

Recommendations

STATE LANDS

MARINE FACILITIES

Halcrow

COMMISS

Background **Displacement vs. Force Based Design**

Displacement Based	Force Based
Acceptable damage:	Force limits:
♦Strain	 Strength
 ductility 	♦stress
 Displacement, rotation 	
Directly capture "Seismic Performance": OLE, CLE	Life Safety "No Structural Collapse"
Pushover or time history analysis	Simplified methods (ELF) or response spectrum analysis
Increase material strength to protect against brittle response (shear)	Overstrength (Ω) to protect against brittle response (shear)
Demand displacement < Displacement capacity	Demand Force < Factored strength

Background Displacement vs. Force Based Design

Displacement Based	Force Based
Analytically challenging,	Analytically simple,
Highly variable for small parameter changes	Prone to oversimplifying complex response
Good for evicting	Better for new
Good for existing	
Cost savings in retrofit	Cost savings in Engineering
costs	Effort
Supercool!	Boring
- (but finickv)	(but reliable)

LANDS

Halcrow

ONMIS

STATE

ALIFORNIA

Current Methodology in MOTEMS Substitute Structure Analysis

Pushover Curve

- Soil springs, nonlinear materials, etc.
- Simplify to Bilinear

Substitute Structure

- Iterate displacement to determine ductility
- Alter damping & acceleration based on ductility
- Used for almost all Audits

Substitute Structure Analysis Grey Areas

Bilinear Yield Point
 Secondary Stiffness

 Where from, to
 Practical method

 Damping Equations

 ATC 40 has different equations

 Orthogonal Effects

LANDS

MARINE FACILITI

Halcrow

ONMIS

STATE

NUFORNIA

MOTEMS Future Improvements

Plastic Hinge Length

- Steel piles
- Prestressed piles
- Effective buckling length "k" factors
- Knowledge factor
- Soil Kinematic & Inertial Load
 - Combine? How?
- Simplified Structural Analysis

STATE LANDS

MARINE FACILITIES

Halcrow

COMMISS/

Critical Items

Existing Poorly **Confined Concrete** $\bullet \overline{\epsilon_{cu}} \le L2$ strain

Balance Stiffness \bullet and Ductility

Pipe Stress for Seismic displacement

Chopra-Goel Methodology Grey Areas

Bilinear Yield Point
Hinge Length
"R" Equations
Orthogonal Effects
Iteration Sensitivity

MARINE FACILITIES

Sensitivity Study

Effective Bilinear Curve

- First Yield or Effective
- Locate Du at L2 strain for practicality
- Damping Equations
 MOTEMS
 - FEMA 440 (eq. only)
- Method Comparison
 - Spectra iteration vs displacement iteration

Methodology

Damping vary <u>+</u>10%, Methods vary <u>+</u>30%
All converge at ductility = 1.0
More ductility more variation

Recommendations Significant Parameters

 Effective Yield at secondary stiffness to L2 capacity • FEMA 440 method OK Hinge Lengths Steel 1 diameter in ground \bullet ¹/₂ diameter at deck <u>NEEDS</u> more research ♦ Keep "r" in MOTEMS damping reasonable (< 0.3)

Lessons Learned

Methods vary significantly

 Consider answer PASS/FAIL
 Brittle will NOT pass

 MEED additional research, comparison with real world
 Orthogonal loading
 Kinematic loading
 Instrumented structures
 Ramps / piping / other must satisfy displacements

Some Existing structures
 <u>CAN</u> satisfy MOTEMS

Questions?

