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Background
Displacement vs. Force Based Design

Background
Displacement vs. Force Based Designp gp g

Displacement Based Force BasedDisplacement Based Force Based
Acceptable damage:

Strain 
ductility

Force limits:
Strength
stressductility 

Displacement, rotation
st ess

Directly capture “Seismic 
Performance”: OLE, CLE

Life Safety “No Structural 
Collapse”, p

Pushover or time history 
analysis

Simplified methods (ELF) or 
response spectrum analysis

I t i l t th t O t th (Ω) t t tIncrease material strength to 
protect against brittle 
response (shear)

Overstrength (Ω) to protect 
against brittle response 
(shear)

Demand displacement < Demand Force <
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Demand displacement <     
Displacement capacity

Demand Force < 
Factored strength



Background
Displacement vs. Force Based Design

Background
Displacement vs. Force Based Designp gp g

Displacement Based Force Basedp
Analytically challenging,
Highly variable for small 

parameter changes

Analytically simple, 
Prone to oversimplifying 

complex responseg
Good for existing Better for new

Cost savings in retrofit 
costs

Cost savings in Engineering 
Effortcosts

Supercool!   
…(but finicky)

Boring     
…(but reliable)
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Current Methodology in MOTEMS
Substitute Structure Analysis

Current Methodology in MOTEMS
Substitute Structure AnalysisSubstitute Structure AnalysisSubstitute Structure Analysis

 Pushover Curve Pushover Curve
 Soil springs, nonlinear materials, etc.
 Simplify to Bilinear
 Soil springs, nonlinear materials, etc.
 Simplify to Bilinear

 Substitute Structure
 Iterate displacement to determine 

d tilit

 Substitute Structure
 Iterate displacement to determine 

d tilitductility
 Alter damping & acceleration based on 

ductility

ductility
 Alter damping & acceleration based on 

ductility

 Used for almost all Audits Used for almost all Audits
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Substitute Structure – Demand DisplacementSubstitute Structure – Demand Displacement

Δ / Δ k / kμΔ = Δd / Δy r = kf / ki
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Substitute Structure Analysis 
Grey Areas

Substitute Structure Analysis 
Grey AreasGrey AreasGrey Areas

Bilinear Yield PointBilinear Yield PointBilinear Yield Point
Secondary Stiffness

Wh f t

Bilinear Yield Point
Secondary Stiffness

Wh f tWhere from, to
Practical method

D i E ti

Where from, to
Practical method

D i E tiDamping Equations
 ATC 40 has different 

equations

Damping Equations
 ATC 40 has different 

equationsq

Orthogonal Effects
q

Orthogonal Effects
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MOTEMS 
Future 
MOTEMS 
Future 

Push d

ImprovementsImprovements

 Plastic Hinge Length Plastic Hinge Length
Damaged

 Plastic Hinge Length
 Steel piles
 Prestressed piles

 Plastic Hinge Length
 Steel piles
 Prestressed piles

1/Φ
θLpRegion

p
 Effective buckling length 

“k” factors 

p
 Effective buckling length 

“k” factors 
For same θ as 

Lp   then  must   

 Knowledge factor
 Soil Kinematic & Inertial Load

 Combine? How?

 Knowledge factor
 Soil Kinematic & Inertial Load

 Combine? How? Combine? How?
 Simplified Structural Analysis Methodology

 Combine? How?
 Simplified Structural Analysis Methodology
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Critical ItemsCritical Items

 Existing Poorly Existing Poorly
Poorly
Confined

 Existing Poorly 
Confined Concrete
 εcu < L2 strain

 Existing Poorly 
Confined Concrete
 εcu < L2 strain εcu

εL2

 Balance Stiffness
and Ductility

 Balance Stiffness
and Ductility

cu 

Coronel, Chile

and Ductility

 Pipe Stress for
S i i

and Ductility

 Pipe Stress for
S i iSeismic 
displacement
Seismic 
displacement
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Chopra-Goel PEER 1999 MethodChopra-Goel PEER 1999 Method
(spectra iteration equivalent linearization)(spectra iteration equivalent linearization)

System
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Finished
Δd = Δ1Δ1

& F-D
and Find 
Intersection Note: Similar to ATC 40



Chopra-Goel Methodology 
Grey Areas

Chopra-Goel Methodology 
Grey AreasGrey AreasGrey Areas
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L1 50% in 50yr μ= 0.89 Demand
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L2 10% in 50yr μ= 1.49
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Sensitivity StudySensitivity Study

Pushover Curve

4000 Effective Bilinear Curve Effective Bilinear Curve
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4000 Effective Bilinear Curve
 First Yield or 
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L t D t L2

 Effective Bilinear Curve
 First Yield or 

Effective
L t D t L2
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 Locate Du at L2 
strain for practicality

 Damping Equations

 Locate Du at L2 
strain for practicality

 Damping Equations
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 Method Comparison

 MOTEMS
 FEMA 440 (eq. only)

 Method Comparison
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 Spectra iteration vs 

displacement 

 Method Comparison
 Spectra iteration vs 

displacement 
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Sensitivity StudySensitivity Study

 Examined 12 REAL structures Examined 12 REAL structures
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Yield PointYield Point

 Effective Yield  Larger Demand 
Di l t S ll D tilit

 Effective Yield  Larger Demand 
Di l t S ll D tilitDisplacement  Smaller DuctilityDisplacement  Smaller Ductility
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MethodologyMethodology

 Damping vary +10%, Methods vary +30% Damping vary +10%, Methods vary +30%
 All converge at ductility = 1.0
 More ductility more variation
 All converge at ductility = 1.0
 More ductility more variation

Ductility (μ=Δd/Δy) B-P method w/ MOTEMS ξ OR C-G Method vs B-PDuctility (μ=Δd/Δy) B-P method w/ MOTEMS ξ OR C-G Method vs B-P 
Method w/ FEMA 440 ξ (All with Effective Yield Displacement)
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Recommendations
Significant Parameters

Recommendations
Significant ParametersSignificant ParametersSignificant Parameters

 Effective Yield at Effective Yield at Pushover Curve
 Effective Yield at 

secondary stiffness to 
L2 capacity

 Effective Yield at 
secondary stiffness to 
L2 capacity
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 Hinge Lengths Steel

1 di t i d 2000

2500

3000

ce
 (k

ip
)

Effective Dy

 1 diameter in ground
 ½ diameter at deck
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 1 diameter in ground
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 Keep “r” in MOTEMS 
damping reasonable 
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Lessons LearnedLessons Learned

 Methods vary significantly Methods vary significantly Coronel Chile Methods vary significantly
 Consider answer PASS/FAIL
 Brittle will NOT pass

 Methods vary significantly
 Consider answer PASS/FAIL
 Brittle will NOT pass

Coronel, Chile

 NEED additional research, 
comparison with real world
 Orthogonal loading

 NEED additional research, 
comparison with real world
 Orthogonal loadingg g
 Kinematic loading
 Instrumented structures

 Ramps / piping / other must

g g
 Kinematic loading
 Instrumented structures

 Ramps / piping / other must Ramps / piping / other must 
satisfy displacements

 Some Existing structures 
C f O S

 Ramps / piping / other must 
satisfy displacements

 Some Existing structures 
C f O S
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CAN satisfy MOTEMSCAN satisfy MOTEMS



Questions?Questions?
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