

Prevention First 2010 Symposium, Long Beach

MOTEMS Division 6 Revisions-

Geotechnical Hazards and Foundations

Arul K. Arulmoli, Ph.D., G.E. Earth Mechanics, Inc. Fountain Valley, CA

Geoffrey R. Martin, Ph.D University of Southern California Los Angeles, CA

Development 1990 - 2010

Approved – California State Lands Commission	August 17, 2004
Adopted – California Building Standards Commissio	n January 19, 2005
 Published – California Building Standards Code (Title 24, Part 2, Vol. 2, Chapter 31F) 	August 6, 2005
Effective (CBC 2001, CBC 2007)	February 6, 2006
First Revision in 2009 (CBC 2010)	January 1, 2011
First Revision has Minimal Changes on Division 6 - Geote	chnical Requirements

Turning Of Second 20010 California Building Code

Chapter 31F: Marine Oil Terminals

N TITLE	DIVISION & SECTION
Introduction	1 (3101F)
Audit and Inspection	2 (3102F)
Structural Loading Criteria	3 (3103F)
Seismic Analysis and Structural Performance	4 (3104F)
Mooring and Berthing Analysis and Design	5 (3105F)
Geotechnical Hazards and Foundations	6 (3106F)
Structural Analysis and Design of Components	7 (3107F)
Fire Prevention, Detection and Suppression	8 (3108F)
Piping and Pipelines	9 (3109F)
Mechanical and Electrical Equipment	10 (3110F)
Electrical Systems	11 (3111F)

Structures/Bulkhead Types

Quay Walls / Piers Caisson structure	Sheet pile	Column
 Monolithic, gravity, soil-retaining structure. Foundation on rubble and soil or rock. 		• Structure on columns with auxiliary struc-
Massive	 Soil-retaining sheet pile structure with auxiliary structures for anchoring. Sheet pile, fill-soil foundation. 	tures for horizontal force absorption. Some- times partly soil-retaining. • Column foundation.
	Sheet pile with platform	Pile-supported pier
 Monolithic, gravity, soil-retaining structure. Foundation on rubble and soil or rock. 		
Cantilever		
	 Soil-retaining sheet pile structure with horizontal pile-supported slab. Sheet pile, pile, fill-soil foundation. 	 Pile structure with or without batter piles. Pile foundation.
•Monolithic, gravity, soil-retaining structure. •Foundation on rubble and soil or rock.	Pile	Cellular sheet pile
Block		
	Pile structure, often partly soil-retaining	• Gravity, soil-retaining structure.
 Block work, gravity, soil-retaining structure Foundation on rubble and soil or rock. 		•Sheet pile, fill-soil foundation.

Turning Geotechnical Hazards

Territy Geotechnical Hazards

Territy Geotechnical Hazards

Turning Geotechnical Hazards

Eventy years of Security MOTEMS Division 6 : Current Version

 Section 3106F – \$ 3106F.1 	GEOTECHNICAL HAZARDS AND FOUNDATIONS General
♦ 3106F.2	Site Characterization
♦ 3106F.3	Liquefaction
♦ 3106F.4	Other Geotechnical Hazard
	- Stability of Earth Structures
	- Earthquake Induced Ground Movements
♦ 3106F.5	Soil Structure Interaction
♦ 3106F.6	Mitigation Measures and Alternatives
Significant Revisions to	"Seismic Hazards" Requirements are being Made.

Current MOTEMS Division 4 – MOT Risk Classification & Seismic Ground Motions

- Design Accelerations for Geotechnical Analyses based on Probabilistic Seismic Hazard Analyses (PSHA)
- Design Values depend on Risk Classification and Two Level Seismic Performance Requirements:

Level 1: Minor Damage

Prevention First

Level 2: No collapse and repairable damage

		Encontontion	
RISK CLASSIFICATION	EXPOSED OIL (bbis)	TRANSFERS PER YEAR PER BERTHING SYSTEM	MAXIMUM VESSEL SIZE (DWTx1000)
High	≥ 1200	<u>N.A.</u>	N.A.
Medium	< 1200	≥ 90	≥ 30
Low	< 1200	< 90	< 30

TABLE 31F-4-1 MOT RISK CLASSIFICATION

TABLE 31F-4-2 SEISMIC PERFORMANCE CRITERIA

RISK CLASSIFICATION	SEISMIC PERFORMANCE LEVEL	PROBABILITY OF EXCEEDANCE	RETURN PERIOD	
11:-1	Level 1	50% in 50 years	72 years	
High	Level 2	Level 2 10% in 50 years	10% in 50 years	475 years
Medium Level 1 Level 2	Level 1	65% in 50 years	48 years	
		308 years		
Low	Level 1	75% in 50 years	36 years	
	Level 2	20% in 50 years	224 years	

Prevention First

MOTEMS Division 6 - Revisions

- Revisions are being developed under auspices of CSLC
- Will incorporate most recent practice adopted in several new Codes and Design Guidelines or Criteria:
 - Port of Long Beach Wharf Design Criteria (2009)
 - Port of Los Angeles Seismic Code for Design, Upgrade and Repair of Container Wharves (2010)
 - Proposed ASCE Standards for Seismic Design of Piers and Wharves
 - California Geological Survey Guidelines (2008)

Site Characterization:

Prevention First

- Adequate Site-Specific Borings / Cone Penetration Tests (CPT)
- At Least One Boring Next to CPT Sounding
- Depth Criteria Specified
- Presence of Low Strength / Continuous Thin Soil Layers
- Appropriate and Adequate Laboratory Tests

Prevention Field MOTEMS Division 6 - Revisions Cone Penetration Tests (CPT) - Preferred Site Investigation Method for Liquefaction Evaluations

 Borings are always Required to Collect Soil Samples for Laboratory

Slopes or Embankments – Seismic Stability

Prevention First

- Displacement Based Approach using Newmark Sliding Block Method
- Assumed Rigid Sliding Block on Critical Failure Surface
- Firm Ground Time History Input at Base of Block
- Yield Acceleration from Pseudo-Static Stability Analysis

Prevention First

Slopes or Embankments – Seismic Stability

TRB Report 611 – Seismic Analysis and Design of Retaining Walls,

Buried Structures, Slopes, and Embankments (2008)

 Analytical studies based on regression analyses of large data base of WUS Accelerations (Over 1,800 records)

Earth Pressures on Retaining Structures

Prevention First

- Current Version, 3107F.4 Provides Some Guidance
- Text Complementing 3107F.4 will be added in Division 6
- Will address design issues for cellular structures

Diverse of Prevention MOTEMS Division 6 - Revisions

Ground Improvement

Prevention First

- Densification Techniques
 - Vibro Compaction
 - Vibro Replacement
 - Deep Dynamic Compaction
 - Compaction Grouting
- Hardening (Mixing) Techniques
 - Permeation Grouting
 - Deep Soil Mixing
 - Jet Grouting

Diverse of Prevention MOTEMS Division 6 - Revisions

Ground Improvement – Compaction Grouting

Installation of grout pipe:

Drill or drive casing

Prevention First

- Location very important
- Record ground information from casing installation

Courtesy: Hayward Baker

Initiation of grouting:

- Typically bottom up, but can be top down
- Grout quality important
- Pressure and/or volume of grout is usually limited
- Slow, uniform stage injection

Continuation of grouting:

- On-site batching can aid control
- Grout quality important
- Pressure, grout quantity and indication of heave are controlling factors
- Sequencing of plan injection points very important

International MOTEMS Division 6 - Revisions

Geotechnical Hazards and Foundations

