Prevention First 2010 Symposium, Long Beach

MOTEEMS Division 6 Revisions - Geotechnical Hazards and Foundations

Arul K. Arulmoli, Ph.D., G.E.
Earth Mechanics, Inc.
Fountain Valley, CA

Geoffrey R. Martin, Ph.D
University of Southern California
Los Angeles, CA
History of MOTEMS Development

- **Approved** – California State Lands Commission
 - August 17, 2004

- **Adopted** – California Building Standards Commission
 - January 19, 2005

- **Published** – California Building Standards Code
 - August 6, 2005
 - (Title 24, Part 2, Vol. 2, Chapter 31F)

- **Effective** (CBC 2001, CBC 2007)
 - February 6, 2006

- **First Revision in 2009** (CBC 2010)
 - January 1, 2011

First Revision has Minimal Changes on Division 6 - Geotechnical Requirements
Chapter 31F: Marine Oil Terminals

<table>
<thead>
<tr>
<th>DIVISION & SECTION</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (3101F)</td>
<td>Introduction</td>
</tr>
<tr>
<td>2 (3102F)</td>
<td>Audit and Inspection</td>
</tr>
<tr>
<td>3 (3103F)</td>
<td>Structural Loading Criteria</td>
</tr>
<tr>
<td>4 (3104F)</td>
<td>Seismic Analysis and Structural Performance</td>
</tr>
<tr>
<td>5 (3105F)</td>
<td>Mooring and Berthing Analysis and Design</td>
</tr>
<tr>
<td>6 (3106F)</td>
<td>Geotechnical Hazards and Foundations</td>
</tr>
<tr>
<td>7 (3107F)</td>
<td>Structural Analysis and Design of Components</td>
</tr>
<tr>
<td>8 (3108F)</td>
<td>Fire Prevention, Detection and Suppression</td>
</tr>
<tr>
<td>9 (3109F)</td>
<td>Piping and Pipelines</td>
</tr>
<tr>
<td>10 (3110F)</td>
<td>Mechanical and Electrical Equipment</td>
</tr>
<tr>
<td>11 (3111F)</td>
<td>Electrical Systems</td>
</tr>
</tbody>
</table>
Some Marine Structures/Bulkhead Types

Quay Walls / Piers

- **Caisson structure**
 - Monolithic, gravity, soil-retaining structure.
 - Foundation on rubble and soil or rock.

- **Massive**
 - Monolithic, gravity, soil-retaining structure.
 - Foundation on rubble and soil or rock.

- **Cantilever**
 - Monolithic, gravity, soil-retaining structure.
 - Foundation on rubble and soil or rock.

- **Block**
 - Block work, gravity, soil-retaining structure.
 - Foundation on rubble and soil or rock.

- **Sheet pile**
 - Soil-retaining sheet pile structure with auxiliary structures for anchoring.
 - Sheet pile, fill-soil foundation.

- **Sheet pile with platform**
 - Soil-retaining sheet pile structure with horizontal pile-supported slab.
 - Sheet pile, pile, fill-soil foundation.

- **Pile**
 - Pile structure, often partly soil-retaining and with auxiliary structures for anchoring.
 - Pile foundation.

- **Cellular sheet pile**
 - Gravity, soil-retaining structure.
 - Sheet pile, fill-soil foundation.

- **Column**
 - Structure on columns with auxiliary structures for horizontal force absorption.
 - Sometimes partly soil-retaining.
 - Column foundation.

- **Pile-supported pier**
 - Pile structure with or without batter piles.
 - Pile foundation.
Geotechnical Hazards
Geotechnical Hazards
Geotechnical Hazards
Geotechnical Hazards
Section 3106F – GEOTECHNICAL HAZARDS AND FOUNDATIONS

3106F.1 General
3106F.2 Site Characterization
3106F.3 Liquefaction
3106F.4 Other Geotechnical Hazard
- Stability of Earth Structures
- Earthquake Induced Ground Movements
3106F.5 Soil Structure Interaction
3106F.6 Mitigation Measures and Alternatives

Significant Revisions to “Seismic Hazards” Requirements are being Made.
Current MOTEMS Division 4 – MOT Risk Classification & Seismic Ground Motions

- Design Accelerations for Geotechnical Analyses based on Probabilistic Seismic Hazard Analyses (PSHA)
- Design Values depend on Risk Classification and Two Level Seismic Performance Requirements:
 - Level 1: Minor Damage
 - Level 2: No collapse and repairable damage

TABLE 31F-4-1
MOT RISK CLASSIFICATION

<table>
<thead>
<tr>
<th>RISK CLASSIFICATION</th>
<th>EXPOSED OIL (bbis)</th>
<th>TRANSFERS PER YEAR PER BERTHING SYSTEM</th>
<th>MAXIMUM VESSEL SIZE (DWTx1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>≥ 1200</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Medium</td>
<td>< 1200</td>
<td>≥ 90</td>
<td>≥ 30</td>
</tr>
<tr>
<td>Low</td>
<td>< 1200</td>
<td>< 90</td>
<td>< 30</td>
</tr>
</tbody>
</table>

TABLE 31F-4-2
SEISMIC PERFORMANCE CRITERIA

<table>
<thead>
<tr>
<th>RISK CLASSIFICATION</th>
<th>SEISMIC PERFORMANCE LEVEL</th>
<th>PROBABILITY OF EXCEEDANCE</th>
<th>RETURN PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Level 1</td>
<td>50% in 50 years</td>
<td>72 years</td>
</tr>
<tr>
<td></td>
<td>Level 2</td>
<td>10% in 50 years</td>
<td>473 years</td>
</tr>
<tr>
<td>Medium</td>
<td>Level 1</td>
<td>65% in 50 years</td>
<td>48 years</td>
</tr>
<tr>
<td></td>
<td>Level 2</td>
<td>15% in 50 years</td>
<td>308 years</td>
</tr>
<tr>
<td>Low</td>
<td>Level 1</td>
<td>75% in 50 years</td>
<td>36 years</td>
</tr>
<tr>
<td></td>
<td>Level 2</td>
<td>20% in 50 years</td>
<td>224 years</td>
</tr>
</tbody>
</table>
MOTEMS Division 6 - Revisions

Revisions are being developed under auspices of CSLC
Will incorporate most recent practice adopted in several new Codes and Design Guidelines or Criteria:

- Port of Long Beach Wharf Design Criteria (2009)
- Proposed ASCE Standards for Seismic Design of Piers and Wharves
GUIDELINES FOR EVALUATING AND MITIGATING SEISMIC HAZARDS IN CALIFORNIA

2008
MOTEMS Division 6 - Revisions

Site Characterization:
- Adequate Site-Specific Borings / Cone Penetration Tests (CPT)
- At Least One Boring Next to CPT Sounding
- Depth Criteria Specified
- Presence of Low Strength / Continuous Thin Soil Layers
- Appropriate and Adequate Laboratory Tests
MOTEMS Division 6 - Revisions

Cone Penetration Tests (CPT) – Preferred Site Investigation Method for Liquefaction Evaluations

- Borings are always Required to Collect Soil Samples for Laboratory
MOTEMS Division 6 - Revisions

CPT Plots and Borings Showing Liquefaction Zones on Site Cross-Section

- CPT-1
- CPT-2
- CPT-3
- B-1

Key:
- Zone of Liquefaction

Legend:
- Sand to Silty Sand (Lakewood-San Pedro Formation)
- Sand
- Marine
- Backfill
- Quarry Run Fill
- Rock Rip-Rap
- Clay / Silt (Lagoonal Clay)
- Harbor Bottom Sediments
- Sand to Silty Sand (Hydraulic Fill)

Soil Classification (USCS):
- SM
- CL
- ML
- MH
- SC
- SP-SM
- SP

Friction Ratio (%)
Tip Resistance (tsf)
SPT Blowcounts (N)

Scale: 0 20 40 feet
MOTEMS Division 6 - Revisions

- Slopes or Embankments – Seismic Stability
 - Displacement Based Approach using Newmark Sliding Block Method
 - Assumed Rigid Sliding Block on Critical Failure Surface
 - Firm Ground Time History Input at Base of Block
 - Yield Acceleration from Pseudo-Static Stability Analysis
MOTEMS Division 6 - Revisions

- Slopes or Embankments – Seismic Stability
- Analytical studies based on regression analyses of large data base of WUS Accelerations (Over 1,800 records)
MOTEMS Division 6 - Revisions

Slopes or Embankments – Seismic Stability – Yield Acceleration
MOTEMS Division 6 - Revisions

Slopes or Embankments – Post Earthquake Static Stability ≥ 1.1
Soil-Pile-Structure Interaction

- Inertial Loading (Structure Pushing the Pile => Pile Pushing the Ground)
- Kinematic Loading (Slope Movement => Ground Pushing the Pile)
MOTEMS Division 6 - Revisions

- Inertial Loading

- p-y Springs
 - Best-Estimate (Level Ground)
 - Upper Bound
 - Lower Bound
MOTEMS Division 6 - Revisions

Kinematic Loading

Courtesy - Bill Bruin of Halcrow

Was a Battered Pile
NOW Plumb!

Was a Plumb Pile
NOW Battered!
MOTEMS Division 6 - Revisions

Kinematic Loading

- Use Consistent Ground Displacement and p-y Springs
- Best-Estimate Ground Displacement and p-y Springs are appropriate
MOTEMS Division 6 - Revisions

Combination of Inertial and Kinematic Loadings
MOTEMS Division 6 - Revisions

Earth Pressures on Retaining Structures
- Current Version, 3107F.4 Provides Some Guidance
- Text Complementing 3107F.4 will be added in Division 6
- Will address design issues for cellular structures
MOTEMS Division 6 - Revisions

Ground Improvement

- Densification Techniques
 - Vibro Compaction
 - Vibro Replacement
 - Deep Dynamic Compaction
 - Compaction Grouting

- Hardening (Mixing) Techniques
 - Permeation Grouting
 - Deep Soil Mixing
 - Jet Grouting
MOTEMS Division 6 - Revisions

Ground Improvement – Stone Columns

General Process of Improvement
(Vibratory probe applies ~ 30 tons of centrifugal force to the surrounding ground)

Courtesy: Advanced GeoSolutions, Inc.
MOTEMS Division 6 - Revisions

Ground Improvement – Stone Columns

Water is used to Assist Penetration of the Probe

Courtesy: Advanced GeoSolutions, Inc.
MOTEMS Division 6 - Revisions

Ground Improvement – Jet Grouting

Courtesy: Hayward Baker
MOTEMS Division 6 - Revisions

Ground Improvement – Deep Soil Mixing

Courtesy: Hayward Baker
MOTEMS Division 6 - Revisions

Deep Soil Mixing – Site Logistics

Courtesy: LC Technology Inc.
MOTEMS Division 6 - Revisions

Deep Soil Mixing – Site Logistics
MOTEMS Division 6 - Revisions

- Deep Soil Mixing – Site Logistics
MOTEMS Division 6 - Revisions

Ground Improvement – Compaction Grouting

Installation of grout pipe:
- Drill or drive casing
- Location very important
- Record ground information from casing installation

Initiation of grouting:
- Typically bottom up, but can be top down
- Grout quality important
- Pressure and/or volume of grout is usually limited
- Slow, uniform stage injection

Continuation of grouting:
- On-site batching can aid control
- Grout quality important
- Pressure, grout quantity and indication of heave are controlling factors
- Sequencing of plan injection points very important

Courtesy: Hayward Baker
MOTEMS Division 6 - Revisions

Anticipated Schedule

- Draft to be Completed by Q1 2011
- Incorporate into Draft Revised MOTEMS by Q3 2011
- Public Comments by Q4 2011
- Adoption by CBSC by Q1 2012
MOTEMS Division 6 - Revisions

Geotechnical Hazards and Foundations

QUESTIONS?