LNG TERMINAL ENGINEERING AND MAINTENANCE STANDARDS (LNGTEMS)

Presented by:
Gayle Johnson

Oakland, Ca
October 19, 2010
Presentation Preview

- Project Background
- Project Description
- Final Product
Project Background

- Numerous projects proposed in California
- Lempert-Keene-Seastrand Oil Spill Prevention Act gives CSLC jurisdiction
- Project Commencement – 2006
- Schedule spread over 3 years due to funding
- Halcrow – Prime
 - Aker Kvaerner (LNG systems)
 - Energo Engineering (fixed platforms)
 - Granherne Engineering (deep water mooring)
 - Steve Dickenson (geotechnical)
Project Scope

- 4 Configurations
- Conventional Pier/Wharf
Project Scope

- 4 Configurations
- Conventional Pier/Wharf
- Deep Water Port (Cabrillo Port)
Project Scope

- 4 Configurations
- Conventional Pier/Wharf
- Deep Water Port
- LNG Vessel Adjacent to Existing Platform (Clearwater Port / Grace)
Project Scope

- 4 Configurations
- Conventional Pier/Wharf
- Deep Water Port
- LNG Vessel Adjacent to Existing Platform
- Gravity Based Structure (GBS)
Adriatic LNG – Offshore Italy
Not Covered

- Vessels
 - FSRUs
 - LNG Tank Vessels
 - Tugs
- Siting
Topics

- Similar to MOTEMS
 - Structural Loading, Analysis, Performance
 - Mooring and Berthing
 - Geotechnical Hazards
 - Component Structural Analysis and Design
 - Fire Prevention, Detection, Suppression
 - Piping and Pipelines
 - Mechanical / Electrical
 - Audits and Inspections
- Focus on LNG Specific Design Issues
- Extra Emphasis on Hazards and Risk Analyses
Project Status

- Draft Document Completed June 2009
- Industry Workshop Held In Houston
- Project Completed June 2010
Challenges

- Varying Levels of CSLC Jurisdiction
Challenges

- Varying Levels of CSLC Jurisdiction
- Nearshore vs. Offshore Design
Challenges

- Varying Levels of CSLC Jurisdiction
- Nearshore vs. Offshore Design
- Seismic Design Standards
Challenges

- Varying Levels of CSLC Jurisdiction
- Nearshore vs. Offshore Design
- Seismic Design Standards
 - ISO vs. API
 - Some Europeans pushing for 10,000 year RP
Challenges

- Varying Levels of CSLC Jurisdiction
- Nearshore vs. Offshore Design
- Seismic Design Standards
- New Technologies
Challenges

- Varying Levels of CSLC Jurisdiction
- Nearshore vs. Offshore Design
- Seismic Design Standards
- New Technologies
- Risk Perception
LNG Risk

- Perceived by many to be comparable to nuclear power plants
LNG Risk

- Perceived by many to be comparable to nuclear power plants
- Attempting to capture “best practice”
- Need to accept that we can’t eliminate risk completely
Contents

- Chapter 1 – Intro
- Chapter 2 – Risk Assessment
 - Methods of Sandia study of spill over water
 - API RP 75
 - API RP 14J
 - Safety critical elements, hazard identification, consequence analysis, risk register
Contents

- Chapter 3 – Structural Design – Onshore
 - Same as MOTEMS
 - Different return periods for seismic

- Chapter 4 – Structural Design - Platforms
 - API RP 2A for structure
 - 475 / 2475 year RP earthquakes
 - API RP 2FB for Fire and Blast loading
 - Fatigue, minimum deck elevations, steel embrittlement from LNG spill
Contents

- Chapter 5 – Structural Design – GBS
 - ISO Codes
 - Concrete design per Norwegian Standards, British Standards, or DNV.
 - ACI not as commonly used for offshore GBS

- Chapter 6 – Geotechnical
 - Site specific seismic hazards analysis
 - Dynamic soil response, liquefaction, slope stability
Contents

- Chapter 7 – Mooring and Berthing
 - Onshore uses MOTEMS
 - Floating uses API RP 2SK and OCIMF Single Point Mooring Guides

- Chapter 8 – Geotechnical
 - Facility layout
 - Emergency shutdown and response
 - LNG spill containment
 - Fire and gas detection
 - Fixed and passive fire protection
Contents

- Chapter 9 – Pipelines
 - Cryogenic risers and subsea pipelines

- Chapter 10 – Mechanical systems
 - Focus on LNG specific equipment and systems

- Chapter 11 – Electrical and Instrumentation
 - Includes seismic instrumentation

- Chapter 12 – Inspection
 - Uses API RP 2SIM (Structural integrity management)