Shipboard Experiences with Low Sulfur Distillate Fuel Oil

Unintended Consequences

PREPARED BY:

Maritime Safety Unit

Jeff Cowan

Mike Coyne

ARB Fuel Rules Effective July 1, 2009

- Fuel required for ship's main and auxiliary diesel engines, & auxiliary boilers
 - Marine Gas Oil (MGO) at or below 1.5%
 Sulfur
 - Marine Diesel Oil (MDO) at or below 0.5% Sulfur
- When operating within 24 miles of CA coastline

Summary Loss of Propulsion (LOP) Incidents

LOSS OF PROPULSION INCIDENTS

2004 - 2010

(as of Oct 1, 2010)

Port	2004	2005	2006	2007	2008	2009	2010
San Francisco	15	11	10	10	12	37	17
Los Angeles / Long Beach	8	12	6	14	14	28	10
San Diego	0	1	3	0	0	0	2
Santa Barbara	0	1	0	0	0	2	1
Humboldt	0	0	1	0	0	0	0
Total per year	23	25	20	24	26	67	30

LOSS OF PROPULSION INCIDENTS

Monthly Totals in 2009

Month	Total LOPs	Fuel Switching Related
Jan – June 2009	21	9
Jul-09	13	6
Aug-09	8	4
Sep-09	9	5
Oct-09	8	3
Nov-09	3	2
Dec-09	5	4
Totals	<u>67</u>	<u>33</u>

LOSS OF PROPULSION INCIDENTS

Monthly Totals in 2010

	Total Loss of Propulsion Incidents	Loss of Propulsion - Fuel Switching Related
Jan-10	5	1
Feb-10	3	0
Mar-10	3	2
Apr-10	2	0
May-10	4	0
Jun-10	2	0
Jul-10	3	2
Aug-10	1	0
Sep-10	7	1
Totals	30	6

LOP - LSDFO Related Engine Effects

- 1. LSDFO Inherent lower viscosity
- 2. Low sulfur content (lower lubricity)
- 3. Temperature variance between fuels {HFO 150C (302F) vs. LSDFO 40C (104F)}

LOP - LSDFO Related

LOP Preliminary Common Threads

- Engine temperature increase (pistons/cylinder)
- Poor engine performance / stall outs at low RPM
- Insufficient fuel oil pump pressure
- Fuel system leaks (internal/external)
- Fuel pump malfunctions and wear
- Poor / failure of engine to operate in astern mode

Engine Issues

Engine Problems with LSFDO

- Difficulty finding fuel with sufficient viscosity.
 - Heat effects viscosity.
 - Marine Gas Oil (MGO) 2cst @ 40C(104F) = 1.7cst@50C(122F).
 - Minimum engine viscosity specs <u>2cst</u>.
- Long term engine deterioration.
- Complex switching procedures.
- Ships not responding to speed or failing to start.

San Francisco Bay Area Concerns

- > An LOP could result in a marine accident
 - Discharge of oil from a ship allision with a bridge, collision with another ship or grounding.
- Ecologically and politically sensitive region
 - Environmentally sensitive estuary system
 - Three National Marine Sanctuaries offshore
 - Key part of the Pacific Flyway
 - 2007 "COSCO BUSAN" oil spill
 - 2009 "DUBAI STAR" bunker oil spill

New Voluntary Western Traffic Lanes for LALB HARBOR

Los Angeles

LA/LB Concerns

- Vessel traffic congestion south of Channel Islands
 - Vessels opting to transit west/south of the Channel Islands and not via Santa Barbara Channel to/from LALB
- ➤ US Navy concerned with increased traffic through the pacific missile test range west of Channel Islands

What We Don't Want!

Engine Damage / Limitations

Fuel Pump Plungers

Causes problems on 4-st engines as the clearance inside the pumps are much smaller.

Crankcase Doors

Findings / Solutions - Recommendations

Improper Governor Pre-set Speed

Setting or Binding of the Fuel Rack

- Check pre-set governor speed setting
 - Pressure may be set too low or for too short a time period.

Findings / Solutions - Recommendations

- Insure no binding in the fuel pumps, rod connections, or bearings.
- Failure to start may be associated with insufficient fuel delivery.
- ➤ If engine fails to start on Bridge Control:
 - Switch to the Engine Control Room

Switching to Engine Control Room or Engine Side

May allow the engine to start in some instances

- Until the starting characteristics of the engine on MGO (light distillate) are proven:
 - When going astern, transfer control to the engine control room.
 - Engineers can increase the starting fuel setting if the engine does not start on the first attempt.

Arrival San Francisco – Rest Periods 20 hr work day for the Chief Engineer

- > 0500 Hrs ETA San Francisco Pilot Station (SFPS)
- 2200 Hrs Call CE & Duty Eng. Prepare for Fuel Switch
- > 0000 Hrs Fuel switch starts
 - 150°C to 40°C Temp reduction at 2°C per minute
- > 0110 Hrs Fuel Switch complete, CPA CA 24 NM
 - Enters ARB zone proceeding at reduced RPM.
- > 0500 Hrs Arrival SFPS

Part II Arrival San Francisco – Rest Periods 20 hr work day for the Chief Engineer

- > 0730 Hrs All Fast to berth
- > 0800 Hrs Cargo commences. Bunker barge alongside
- 0900 Hrs Commence taking bunkers
- > 1700 Hrs Bunkers complete
- > 1800 Hrs Sign off bunkering paperwork
- ► ETD 0500 Hrs

ILO Convention (No. 180) Seafarers' Hours of Work & the Manning of Ships

- > Article 5
- 1. The limits on hours of work or rest shall be as follows:
 - (a) maximum hours of work shall not exceed:
 - (i) 14 hours in any 24-hour period; and
 - (ii) 72 hours in any seven-day period or;
 - (b) minimum hrs of rest shall not be less than:
 - (i) ten hours in any 24-hour period; and
 - (ii) 77 hours in any seven-day period.

OSPR's Concern Increase risk for an oil spill due to higher rates of Loss of Propulsions incidents

Data Sources

- USCG District 11
- USCG Sector San Francisco
- USCG Sector Los Angeles / Long Beach
- USCG San Diego
- The Marine Exchange of Southern California
 - VTS LA/LB
- Wartsila

- > MAN B&W
- Larry Korwatch, CE Ret.
 MEBA
- Pilot organizations of San Francisco, Los Angeles & Long Beach
- Rob Jackson, CE Ret.California MaritimeAcademy
- > APL Maritime, LTD
- Hans Muellar, MTD