Prevention First 2008

THUMS Long Beach Automated Safety Systems

Presentation Agenda

- Introduction to Thums
- Evolution of Safety Systems at Thums
- Safety System Requirements
- Safety System Architecture
- Safety System Testing
- Questions and Answers

THUMS – A Unique Facility

THUMS/Occidental Petroleum

Field Contractor for oil producing property in Long Beach, Ca

Background information

- State of California –Owns 90% of the Wilmington Oil and Gas Field, Fourth largest in the USA
- Operator City of Long Beach
- Field Contractor -THUMS/Occidental
 - •Facilities 4 man-made islands

1 pier facility

1 gas processing facility

1 power plant

- •Peak rate 150,000 BOPD in 1969
- •Present rate 30,000 BOPD
- •Injection rate 1,000,000 BPD
- •737 producers and 455 injection wells
- •50 MW/H annual electrical load

Thums Islands and Subsea Pipelines

Evolution of Safety Systems at Thums

Safety by Design

- Production and Injection Wells located in Cellars
- Secondary Containment on Islands

Automation Safety System Upgrade

- Process Hazard Review for Critical Systems
- Subsea Line Emergency Shutdown Valves
- Segregation of Process and Critical Shutdowns
- Redundant Safety System Processor
- Inter-Island Communication

Safety in Original Design

Secondary Containment At Seawall

Subsea Line ESD Valves

Safety System Requirements

Shutdown Production

- FWKO Levels and Pressures
- High Tank Levels
- Cellar Gas Detection

Isolate Subsea Lines

- High and Low Subsea Line Pressure
- ESD Valve Closure

Divert at J-2 (Shore Facilities)

- Divert oil on high FWKO level
- Divert water on high pressure

Failsafe

- Power and Air required to maintain operations.
- Valves fail to predefined positions on loss of power or air
- System response predefined for transmitter failure

Safety System Architecture

- Redundant Safety PLC for each location
- Segregation of Critical and Process Interlocks
- Dedicated Safety system transmitters and valves
- Microwave Ring to communicate with other locations
- Separate IT network for Automation system
- Hand shaking communication between Safety PLCs on each location
- Uninterruptible Power Supply for Safety PLC
- Safety PLC in secured location, limited access
- Operator Paging System for Alarms

Island Control System Architecture

Automation Network

Safety PLC and Server Racks

Operator Control Station (HMI)

Operator Shut-in System Graphic

Operator Cellar Isolation Graphic

Safety System Testing

Quarterly DOG Testing

- Partial Stroke Testing of Subsea line ESD Valves
- Testing of Cellar Gas Detection
- Testing of Shut-in Devices
- Testing of Switches and Buttons

Annual DOG Testing

- Full closure test of Subsea ESD Valves
- Quarterly DOG Tests

Questions

