California State Lands Commission
Prevention First Symposium

“Environmental Challenges Associated with Offshore Well Abandonment”

Jim Chaconas, P.E.
Drilling Engineering Manager, InterAct PMTI

September 9, 2008
Long Beach, California
Environmental Challenges Associated with Offshore Well Abandonment

1. What are the Objectives of a Successful Abandonment?
2. What Materials & Techniques are Used?
3. What do the Regulations Require?
4. What Special Challenges Exist Offshore?
5. What makes Subsea Well Abandonment Unique?
6. What is Rigless P&A?
7. What is Sustained Casing Pressure?
8. Why do Some Wells Require Reabandonment?
9. What New Technologies are Available?
10. What Best Practices Ensure a Successful Offshore P&A?
What are the Objectives of a Successful Well Abandonment?

- Prevent Migration of Fluids within the Wellbore
 - Isolate Hydrocarbon Zones
 - Protect Fresh Water Aquifers
- Prevent Release of Formation Fluids to the Environment
- Restore Surface Uses
 - Remove Wellhead / Xmas Tree
 - Cut Casings Below Ground Level / Sea Floor
- Meet Regulatory Requirements
- Minimize Environmental Impacts during Operations
 - Maintain Well Control
 - Avoid Spills
 - Minimize Environmental Effects (Air Emissions, Biological Impacts)
What are the Objectives of a Successful Well Abandonment?

1. Seal Fluid Pathways Created to Produce Oil & Gas
 - Perforations
 - Slotted Liners

2. Remedy Deficiencies / Failures in Well Construction
 - Cement Channels
 - Lack of Cement
 - Casing Leaks
What Materials & Techniques are Used?

Materials Used to Seal Fluid Pathways

- **Common**
 - Cement: Used since 1920s ±
 - Mechanical Seals: e.g., Bridge Plug – cast iron, steel, elastomers

- **Other**
 - Bentonite Pellets
 - Epoxies, Resins, Polymers

- **Historical**
 - Wooden Plugs
What Materials & Techniques are Used?

Abandonment Techniques

- Cement Placement Techniques
 - Balanced Plug
 - Squeezing – Pumping cement under pressure

- Severing Techniques
 - Explosives
 - Mechanical Cutter
 - Abrasive Jetting
 - Bandsaw
 - Diamond Wire
 - Torch Cutting
What do the Regulations Require?

- DOGGR: Onshore, Offshore State Waters
- CSLC: Offshore State Waters
- MMS: Offshore Federal Waters
- Other Federal, State & Local Agencies may be involved depending on project scope.
What Special Challenges Exist Offshore?

- Equipment Availability
 - Lack of mobile rigs on west coast
- Operating Challenges
 - Weather
 - Seas
 - Logistics
 - Corrosion
- More Elaborate Well Completions
 - Multiple Tubing strings
 - Chemical Injection Lines / Sensor Cables
- Stricter Environmental Requirements
- Subsea Wells
What Makes Subsea Wells Unique?

- Wellhead Equipment is Located on Sea Floor
 - Rather than above sea level (e.g., on platform or island)

- Wellhead/Tree Design
 - Obsolete / One-Off Designs
 - Well Control Equip./Procedures
 - Complicated Flowpaths
 - Custom Tool Fabrication

- Special Resources Required
 - Divers
 - Mobile Drilling Rig or Rigless
What is Rigless P&A?

- Abandonment operations conducted without a conventional drilling or workover rig, using
 - Coiled Tubing, Wireline, Pumps, Crane, and/or Workboat/Barge

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Avoid rig mobilization</td>
<td>- Inability to fish stuck tubing/tools</td>
</tr>
<tr>
<td>+ Generally lower cost</td>
<td>- Casing recovery difficult</td>
</tr>
<tr>
<td>+ Avoid tubular disposal</td>
<td>- Difficult w/ some completions</td>
</tr>
<tr>
<td>+ Often lower well control risk</td>
<td></td>
</tr>
</tbody>
</table>

- Hydraulic Workover Units (snubbing units) offer similar benefits & can overcome certain rigless limitations
What is Sustained Casing Pressure?

aka: Annular Gas Pressure, Casing Vent Flow

- Sustained pressure on the annuli of production or surface casing.

- Cause: Presence of a flow path to the surface from higher pressure subsurface zones
 - Uncemented annulus
 - Channel through a cemented annulus
 - Can develop during well construction
 - Can develop over time
What is Sustained Casing Pressure?

Solutions

- Diagnosis Source
 - Research
 - Fluid analysis
 - Logging

- Remediation
 - Cement squeezing
 - From surface, or
 - Thru perforations
 - Cement plug
 - After casing removal
 - Cement Circulation
 - Through cut or perfs
Why Do Some Wells Require Reabandonment?

1. Leak Develops
 - Original Abandonment Fails or Was Never Performed
 - Changing subsurface conditions
 - E.g., Repressurization, earth movement
 - Temporary P&A (e.g., wellhead not removed), Uncemented Annulus
 - Inadequate well construction
 - Historical P&A Practices – e.g., wooden plugs
Why Do Some Wells Require Reabandonment?

2. Original P&A Doesn’t Meet Current Requirements
 - Reabandonment is called for when land development or construction will prevent future access to the well.

3. The Well becomes Exposed
 - Subsidence
 - Storm / Tidal Action
 - Development / Grading / Dredging
What New Technologies are Available?

- Cement Plug Placement Tools
- Specialty Cements
- Low Melting–Point Metal Alloys
- Rigless Integrated Tools (Annular perforation and circulation)
Planning

- Thorough Understanding of Subsurface Conditions
 - Original Well Construction
 - Current Wellbore, Reservoir & Geologic Conditions
 - Field Practices – lift methods, historical problems

- Evaluation of Surface Conditions
 - Wellhead /Tree Condition
 - Equipment / Material Logistics
 - Marine Conditions
 - Impact Mitigation

- Detailed Abandonment Plan
 - Abandonment Design
 - Cement Design
 - Contingency Planning
 - Well Control Planning
 - Health, Environment & Safety Planning
What Best Practices Ensure a Successful P&A?

Execution

- Ability to Respond to Changes
- Lab Testing of Cement Slurries
- Wellbore Cleaning
- Effective Cement Placement
- Minimize Cement Contamination
We Plan. We Execute.

InterAct

PMTI