California State Lands Commission Prevention First Symposium

"Environmental Challenges Associated with Offshore Well Abandonment"

Jim Chaconas, P.E. Drilling Engineering Manager, InterAct PMTI

> September 9, 2008 Long Beach, California

Environmental Challenges Associated with Offshore Well Abandonment

- 1. What are the Objectives of a Successful Abandonment?
- 2. What Materials & Techniques are Used?
- 3. What do the Regulations Require?
- 4. What Special Challenges Exist Offshore?
- 5. What makes Subsea Well Abandonment Unique?
- 6. What is Rigless P&A?
- 7. What is Sustained Casing Pressure?
- 8. Why do Some Wells Require Reabandonment?
- 9. What New Technologies are Available?
- 10. What Best Practices Ensure a Successful Offshore P&A?

What are the Objectives of a Successful Well Abandonment?

- Prevent Migration of Fluids within the Wellbore
 - Isolate Hydrocarbon Zones
 - Protect Fresh Water Aquifers
- Prevent Release of Formation Fluids to the Environment
- Restore Surface Uses
 - Remove Wellhead / Xmas Tree
 - Cut Casings Below Ground Level / Sea Floor
- Meet Regulatory Requirements
- Minimize Environmental Impacts during Operations
 - Maintain Well Control
 - Avoid Spills
 - Minimize Environmental Effects (Air Emissions, Biological Impacts)

What are the Objectives of a Successful Well Abandonment?

Insert Well Diagram

- Seal Fluid Pathways Created to Produce Oil & Gas
 - Perforations
 - Slotted Liners
- Remedy Deficiencies
 / Failures in Well
 Construction
 - Cement Channels
 - Lack of Cement
 - Casing Leaks

InterAct PMTI

What Materials & Techniques are Used?

Materials Used to Seal Fluid Pathways

- Common
 - Cement: Used since 1920s±
 - Mechanical Seals: e.g., Bridge Plug cast iron, steel, elastomers
- Other
 - Bentonite Pellets
 - Epoxies, Resins, Polymers
- Historical
 - Wooden Plugs

What Materials & Techniques are Used?

Abandonment Techniques

- Cement Placement Techniques
 - Balanced Plug
 - Squeezing Pumping cement under pressure
- Severing Techniques
 - Explosives
 - Mechanical Cutter
 - Abrasive Jetting
 - Bandsaw
 - Diamond Wire
 - Torch Cutting

What do the Regulations Require?

- DOGGR: Onshore, Offshore State Waters
- CSLC: Offshore State Waters
- MMS: Offshore Federal Waters
- Other Federal, State & Local Agencies may be involved depending on project scope.

What Special Challenges Exist Offshore?

- Equipment Availability
 - Lack of mobile rigs on west coast
- Operating Challenges
 - Weather
 - Seas
 - Logistics
 - Corrosion
- More Elaborate Well Completions
 - Multiple Tubing strings
 - Chemical Injection Lines/ Sensor Cables
- Stricter Environmental Requirements
- Subsea Wells

What Makes Subsea Wells Unique?

- Wellhead Equipment is Located on Sea Floor
 - Rather than above sea level (e.g., on platform or island)
- Wellhead/Tree Design
 - Obsolete / One–Off Designs
 - Well Control Equip./Procedures
 - Complicated Flowpaths
 - Custom Tool Fabrication

Special Resources Required

• Divers

0

Mobile Drilling Rig or Rigless

What is Rigless P&A?

- Abandonment operations conducted without a conventional drilling or workover rig, using
 - Coiled Tubing, Wireline, Pumps, Crane, and/or Workboat/Barge

Benefits

- + Avoid rig mobilization
- Generally lower cost
- + Avoid tubular disposal
- Often lower well control risk

<u>Limitations</u>

- Inability to fish stuck tubing/ tools
- Casing recovery difficult
- Difficult w/ some completions
- Hydraulic Workover Units (snubbing units) offer similar benefits & can overcome certain rigless limitations

What is Sustained Casing Pressure?

aka: Annular Gas Pressure, Casing Vent Flow

- Sustained pressure on the annuli of production or surface casing.
- Cause: Presence of a flow path to the surface from higher pressure subsurface zones
 - Uncemented annulus
 - Channel through a cemented annulus
 - Can develop during well construction
 - ✓ Can develop over time

What is Sustained Casing Pressure?

Solutions

- Diagnosis Source
 - Research
 - Fluid analysis
 - Logging

Remediation

- <u>Cement squeezing</u>
 - From surface, or
 - Thru perforations
- <u>Cement plug</u>
 - After casing removal
- <u>Cement Circulation</u>
 - Through cut or perfs

Why Do Some Wells Require Reabandonment?

1. Leak Develops

- Original Abandonment
 Fails or Was Never
 Performed
- Changing subsurface conditions
 - E.g., Repressurization, earth movement
- Temporary P&A (e.g., wellhead not removed), Uncemented Annulus
- Inadequate well construction
- Historical P&A Practices e.g., wooden plugs

Why Do Some Wells Require Reabandonment?

- 2. <u>Original P&A Doesn't Meet</u> <u>Current Requirements</u>
 - Rebandonment is called for when land development or construction will prevent future access to the well.
- 3. <u>The Well becomes Exposed</u>
 - Subsidence
 - Storm / Tidal Action
 - Development / Grading / Dredging

What New Technologies are Available?

- Cement Plug Placement Tools
- Specialty Cements
- Low Melting-Point Metal Alloys
- Rigless Integrated Tools (Annular perforation and circulation)

What Best Practices Ensure a Successful P&A?

<u>Planning</u>

- Thorough Understanding of Subsurface Conditions
 - Original Well Construction
 - Current Wellbore, Reservoir & Geologic Conditions
 - Field Practices lift methods, historical problems
- Evaluation of Surface Conditions
 - Wellhead /Tree Condition
 - Equipment / Material Logistics
 - Marine Conditions
 - Impact Mitigation
- Detailed Abandonment Plan
 - Abandonment Design
 - Cement Design
 - Contingency Planning
 - Well Control Planning
 - Health, Environment & Safety Planning

What Best Practices Ensure a Successful P&A?

Execution

- Ability to Respond to Changes
- Lab Testing of Cement Slurries
- Wellbore Cleaning
- Effective Cement
 Placement
- Minimize Cement
 Contamination

We Plan. We Execute.

Interact PMTI