Studies in the Coal Oil Point Marine Hydrocarbon Seep Field
where oil and gas meet sea and surf

Ira Leifer (UCSB)
Bruce Luyendyk (UCSB)
Tonya Del Sontro (UCSB)
Thor Egland (L3 Corp)

Prevention First
Sept 12-13, 2006
Long Beach, California
Thanks to the support of

California State Lands Commission
In collaboration with
Office of Spill Prevention and Response
Department of Fish and Game
Division of Oil Gas and Geothermal Resources
University of California Energy Institute
Clean Seas
NASA
National Science Foundation
NOAA
Mineral Management Service
US Geological Survey

www.bubbleology.com
Study Goals

- Estimate total oil and gas emissions
- Identify sources of emission variability
- Predict the fate of emitted oil
- Identify major sources of tar on area beaches
Seep Studies are Relevant!

Seeps are a major pollution source that stresses humans and the environment.

The Coal Oil Point Seep Field is an *ideal* natural laboratory to study oil in the ocean.

www.bubbleology.com seeps.geol.ucsb.edu
Wise words of KK - Its the oil!!

Caveat (it’s the methane too - a potent GHG 22 times more powerful than CO2)
Where is the Coal Oil Point seep field?

www.bubbleology.com seeps.geol.ucsb.edu
Stats - 100,000 m³ methane per day
100 bbl oil per day

www.bubbleology.com
That’s one exxon valdez every 5-7 years
Jackpot seep

100 bbl/day is normal

www.bubbleology.com seeps.geol.ucsb.edu
Some days are not normal!

www.bubbleology.com
So what happens on a bad day?
Then where does the tar come from?
Where does the tar come from?

Oil slicks advected by winds and currents and aged by the sun and evaporation and other processes
Tool for studying oil slick evolution
CATDRUMs - Catamaran Rotating Drum Slick Sampler
Particle Slick Tracking

Hollow glass microspheres
~35 µm radius

www.bubbleology.com
The spheres track the slick
Can be followed from a boat
and are visible from the air
On this day, the slick tracked almost due east
while the slick tracked east . . .
a drift buoy tracked NNW

www.bubbleology.com seeps.geol.ucsb.edu
Standard model run
Predicted slick to track WNW

Model - NOAA GNOME

www.bubbleology.com seeps.geol.ucsb.edu
Introduction of a current factor allowed model to track the true slick trajectory.

Slick tracking studies improve modeling capabilities.
So what happens on a bad day?
Conditions favorable for beach tar
Step 1 - Convergence Zone Accumulation

Trilogy Seep

www.bubbleology.com
Step 1 - Convergence Zone
Accumulation

Seep Tent Seep

www.bubbleology.com
Step 2 - Currents draw into long slicks
Sea breeze pushes oil slicks towards shore and weathers oil.
Very weathered oil begins sinking
and what doesn’t sink . . .
beaches!
When and why are there bad days?
Beach tar in study area at Coal Oil Point

20,000 m² surveyed.
1500+ points per survey

Feb 27
Tar was classified by size during surveys along 12 transects.
A clear seasonal variation

www.bubbleology.com seeps.geol.ucsb.edu
Some conditions unfavorable

offshore

B. Daily Hours of North Winds

Some conditions favorable

www.bubbleology.com

seeps.geol.ucsb.edu

onshore

C. Daily Hours of South Winds
Swell seems related too...
but other factors seem largely and generally unrelated
And then there was Feb 27

web.bubbleology.com

www.bubbleology.com

seeps.geol.ucsb.edu
How to quantify field-wide emissions?

Sonar Survey!
Sonar returns can be calibrated and sonar surveys rapidly cover large areas to estimate field gas emissions.
Fish and noise (red) are removed and for a selected window, sonar returns are calculated.
They noise level is set based on the sonar return probability function.
Next we compare three trilogy lines surveyed April 2005 and Sept 2005
The Trilogy lines show significant differences spring to fall.
Analysis of 2005, 2006, & 2007 data will produce contour maps to compare with previous surveys.
and then there are those exceptional days
One of which was Feb 27
What was unusual winter 2005 were the exceptional rains
Propose: Hydraulic pressure via aquifers can greatly increase emissions
Including perhaps . . .

![Image of diver and pre-ejection]
by submarine . . .

~1m

$\ t = 0.6 \text{ s}$
blowouts

\[t = 1.2 \text{ s} \]

\[\sim 1 \text{ m} \]
... when aquifer pressure ...

t = 20.2 s

1 m

www.bubbleology.com

seeps.geol.ucsb.edu
... opens new vents ...
. . . freeing trapped oil . . .

www.bubbleology.com
Thank you for . . .
... learning about the Coal Oil Point seep field ...
an extraordinary natural laboratory
and scientific play field

www.bubbleology.com seeps.geol.ucsb.edu