An Oily Summerland Century Story

Ira Leifer and Ken Wilson

University of California, Santa Barbara
Office of Spill Prevention and Response

Prevention First
Long Beach, California
Sept 12, 2006
Special Thanks

- Robin Lewis, Randy Imai, John Tarpley, Josh Curtis - Cal. Dept. of Fish and Game – Office of Spill Prevention and Response (OSPR)
- Ray Michalski (Garibaldi Captain), John Ugoretz (Diver) : DFG - Marine Regents
- Jorge Gross, Hector Orozco (DFG-Enforcement, Boat Driver)
- Ann Bull - United States, Minerals Management Service
- Greg Sanders – United States Fish and Wildlife Service
- Chris McCullough, Cal. Dept of Conservation
- Ken Mayer, Mike Sowby, Carlton Moore (DFG)
- Tonya Del Sontro and Una Matko – participating UCSB students
- Dave Farrar, Shane Anderson, George Wardlaw (UCSB, divers)
Special Thanks

The Critical Support of the California Department of Fish and Game, Office of Spill Prevention and Response

And the support of the University of California Energy Institute
The Problem

Despite multiple abandonment efforts, persistent but intermittent beach oiling continues causing community concern.
The Solution

A scientific study to quantify the amount of oil emitted and to understand the intermittency and persistence of oil emissions at Summerland
The Answer

There is a geologic reason why Summerland reports persistent oiling.
Root Cause - Historical and Geological

416 wells drilled 1895-1906
220 wells drilled nearshore and offshore
Abandonment Efforts

Historical- Rags & Telephone Poles

Modern - Reduced Oil Emissions Significantly
Approaches

• Aerial Surveys
• Underwater Surveys & Quantification
• Boat Surveys
• Beach Surveys & Quantification
How Much Oil?
Summerland is a 15-45 minute drive east from Santa Barbara
Underwater Surveys & Quantification

Video-Monitored Seep Tents
Underwater Surveys & Quantification
Video-Monitored Seep Tents
Underwater Surveys & Quantification

Video-Monitored Seep Tents
Underwater Surveys & Quantification

A) $t = 0.0 \text{ s}$
B) $t = 1.0 \text{ s}$
C) $t = 2.0 \text{ s}$
Oct 27-28, 2003 Seabed Deployment

Tide Height (m)

Local Time

Site 1

Site 2

Site 3
Oct 27-28, 2003 Sites 1-3 Emissions

<table>
<thead>
<tr>
<th>Site Sample</th>
<th>Time deploy</th>
<th>Time (min)</th>
<th>Oil (ml)</th>
<th>Oil Flux (ml dy⁻¹)</th>
<th>Gas (ml)</th>
<th>Gas Flux (L dy⁻¹)</th>
<th>Gas/Oil ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>14:35</td>
<td>5.15</td>
<td>0.0027</td>
<td>0.75</td>
<td>364.60</td>
<td>101.95</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>14:39</td>
<td>6.20</td>
<td>0.0027</td>
<td>0.63</td>
<td>407.70</td>
<td>94.69</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>14:46</td>
<td>5.00</td>
<td>0.0054</td>
<td>1.56</td>
<td>259.40</td>
<td>74.71</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>15:25</td>
<td>6.32</td>
<td>0.0027</td>
<td>0.62</td>
<td>318.50</td>
<td>72.57</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>15:36</td>
<td>4.08</td>
<td>0.0036</td>
<td>1.27</td>
<td>298.70</td>
<td>105.42</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>15:52</td>
<td>3.46</td>
<td>0.0032</td>
<td>1.33</td>
<td>265.30</td>
<td>110.41</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>13:34</td>
<td>31.3</td>
<td>0.4910</td>
<td>22.6</td>
<td>8.00</td>
<td>0.368</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>14:05</td>
<td>112.29</td>
<td>0.4310</td>
<td>5.53</td>
<td>1.50</td>
<td>0.019</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>15:56</td>
<td>26.60</td>
<td>2.3360</td>
<td>126.46</td>
<td>12.40</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Mean Site Values

- Oil Flux (ml dy⁻¹)
- Gas Flux (L dy⁻¹)

<table>
<thead>
<tr>
<th>Site</th>
<th>Oil Flux</th>
<th>Gas Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.979±0.4</td>
<td>90.4±14</td>
</tr>
<tr>
<td>2</td>
<td>1.072±0.4</td>
<td>96.2±20</td>
</tr>
<tr>
<td>3</td>
<td>51.5±65.5</td>
<td>0.35±0.33</td>
</tr>
</tbody>
</table>
SCUBA Survey Dec 2004

Treadwell was active, S-3 was not. High profile tent was rapidly degraded by the surge. Two other minor emission sites, S-4 and S-5, further offshore from T-10 were identified.
SCUBA Survey July 19-20 2005

Treadwell T-10 was active, S-3 was inactive. Tube and Cone Tents were deployed.
Emission for July 2005

Figure Here
Oct 27, 2005 Seabed Deployment
T10 (combined) Emission
Oil to Gas Ratios
Curve Fit to Data

- Cone Tent Oil
- Cone Fit
- Tube Tent Oil (*4)
- Tube Fit
- Combined
- Combined Fit

Oil Emission (L hr⁻¹)

Depth (m)

\[E = 0.020 T + 0.13 \]

\[E = -0.11 T + 0.70 \]
Bottom Line:

2.62 liters oil day\(^{-1}\) from T-10 Well
Why?
Why?
Why?
Carpinteria Basin Geologic Structure
Summerland Area Geologic Structure

Qoa - alluvium
Qca-Casitas Formation
Tr- Rincon Formation
Qt-Terrace
North-South Summerland Cross-section MM’

Tv - Vaqueros Formation
Tr - Rincon Formation
Ts - Sespe Formation
Qca - Casitas Formation
Qoa - Alluvium
Qt - Terrace
Tm - Monterey Formation
Treadwell Pier Cross-section

SECTION THROUGH TREADWELL (SOUTHERN PACIFIC COMPANY'S) WELLS.

N. 12° E. to a point immediately northwest of big oil tank in Summerland. Section is about 1,000 feet west of Oxnard wharf.

from Grosbard (2002)
Boat Surveys
Bottom Line:
Geologic Evidence and Sea Surface Seep

Trends show Treadwell T-10 was drilled into a fault
We propose the fault is the Ortega Fault
Summerland Seepage Conceptual Model
Conclusions

- First quantification of submarine oil emission rates from an abandoned oil well
- Total T-10 oil emission Oct 18, 2005 was 2.6 liters per day
- S-3 Site, was active when T-10 was not, at other times, T-10 was active. Likely due to tapping the same faulted reservoir along the Treadwell Pier
- Although T-10 was the dominant oil emission source, sea surface surveys showed a trend of natural oil and gas seepage offshore Summerland
- The oil to gas ratios at S-3 and T-10 both surveys was approximately 1 to 10. Very oily bubbles (black bubbles) were mostly gas
Conclusions

• Geologic data indicates a fault passes through the Treadwell Pier
• Seep trend indicates a fault offshore Summerland - Proposed as the Ortega Fault
• The Proposed Ortega Fault passes through T-10 and likely other wells on the Treadwell Pier
Conclusions

The failures of multiple T-10 abandonments is due to geological factors, which indicate that future abandonment(s) to decrease oil emissions will be of short-lived success.

Moreover, seepage likely would increase from other conduits - natural seepage or human created, such as Site S-3.