POLA / Pacific Energy Berth 408 Crude Oil Import Terminal Design

"Overview of the Terminal Design"

Prevention First 2006

September, 2006

Long Beach, CA

Ron Heffron, P.E., Moffatt & Nichol

Topics to be Covered

- The Need for the Terminal
- Full Project Flyover
- Design Criteria

- State-of-the-Art Systems and Features
- State-of-the-Art Analyses Performed
- Challenges and Hurdles to Overcome

The Need for the Terminal

Los Angeles Regional Demand

The Need for the Terminal

Foreign Imports Drive Demand

- Significant increase in marine imports over next ten years– 460,000 bbls/day or 100% increase
- Crude oil demand and decline of California crude oil productions drives the need for Pier 400 project
- Addresses petroleum import needs for the Los Angeles area
- Imports will be important to the continued economic development of the Los Angeles area economy

From Baker & O'Brien Study

Design Criteria – Big Picture

- Import Capacity = 250,000 bbl/day
- Pier 400, Berth 408 Site Chosen
 - Deep Draft (-81 ft) Requires No Additional Dredging
 - Original Driver Behind Pier 400 Landfill
 - Relatively Isolated From San Pedro Community
- Accommodate Panamax up to VLCC
- Four 16-inch Unloading Arms
- One 8-inch Fueling Arm for Distillate
 Loading/Unloading
- State-of-the-Art Safety Features

Design Criteria – Terminal Layout

Design Criteria – Design Vessel Parameters

PARAMETER	VLCC	SUEZMAX	AFRAMAX	PANAMAX	FUEL BARGE
DWT (tonnes)	325,000	149,000	105,000	70,000	1,400
Displace- ment (tonnes)	370,000	172,400	125,000	85,000	~1,800
LOA / Beam (ft)	1,115 / 184	899 / 151	780 / 125	761 / 105	170 / 44
Loaded Draft (ft)	74	56	48.5	44.6	~7

Design Criteria – Cross Section

Design Criteria – Allowing for the Future

Design Criteria – Fueling System

Design Criteria

MOTEMS Structural Criteria

- ✤ Seismic Criteria
- Mooring Loads
- Berthing Loads
- Wave Loads
- Passing Vessel Loads
- Seiche

•••

- Tsunamis
- Wind Loads
- Current Loads
- Load Combinations
 - Safety Factors

Design Criteria

- MOTEMS Fire Prevention, Detection and Suppression Criteria
- MOTEMS Piping, Mechanical and Electrical Systems Criteria
- Seismic Sensors
- Environmental Monitoring
- Security

Laser-Assisted Docking Aid System

Quick Release Mooring Hooks with Integral load
 Monitoring and Staged Alarm

Unloading Arms with Quick Connect/Disconnect Couplers

Real-time Environmental and Seismic Sensor Monitoring

Gangway Tower with Integral Position
 Monitoring and Staged Alarm

• Fire Protection System with Redundancies – Based on Hazard Analysis and Fire Plan

Integrated Control System for Effective Operator
 Control

• Berth Operational Downtime Analysis

• Passing Vessel Motion Analysis

• Tsunami Hazard Analysis

- Seismic Structural Analysis Per MOTEMS
 - Level 1 Seismic Performance
 - Minor or no structural damage
 - Temporary or no interruption in operations
 - Level 2 Seismic Performance
 - Controlled inelastic structural behavior with repairable damage
 - Prevention of collapse
 - Temporary loss of operations, restorable within months
 - Prevention of major spill (≥1200 bbls)

• Structural and Piping Stress Analysis

Challenges and Hurdles Overcome

- **Regulatory and Permitting Hurdles**
 - **•** Over 25 agency approvals
 - Over 80 individual permits required
- Political Challenges
 - ***** Effective Outreach
 - Citizens and Community Organizations
 - Interest Groups
 - Neighborhood Groups
 - Politicians
- Alternative Marine Power Requirement
 - Shore side infrastructure Challenges
 - **Ship Conversion Challenges**

Conclusions

- Next Generation Marine Oil Terminal
- First New CA MOT in 25+ Years
- First CA MOT to be Designed to New MOTEMS Requirements
- Precedent-Setting Solutions to Technical, Environmental and Political Challenges

POLA / Pacific Energy Berth 408 Crude Oil Import Terminal Design

"Overview of the Terminal Design"

Thank You!

rheffron@moffattnichol.com

Ron Heffron, P.E., Moffatt & Nichol