

# **Risk Assessment/Hazards for Deep Water Port LNG Receiving Terminals**

Mike Hightower Sandia National Laboratories

Prevention First 2006 Symposium September 2006



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.





#### **Presentation Overview**

- Overview of <u>general hazards</u> and risk analysis for large LNG spills over water
- Guidance on <u>site-specific hazards</u> and risk management approach
- Considerations and scale of results for
  - near-shore and off-shore systems
  - large LNG vessels, Deep Water Port storage and regasification systems





### Use of Guidance Information and Results

- The information and results presented are intended to be used as guidance for conducting site-specific hazard and risk analyses
- The results are not intended to be used prescriptively, but rather as a guide for using performance-based approaches to analyze and responsibly manage risks to the public and property from potential LNG spills over water





### Key Features Impacting Possible LNG Carrier Spills

![](_page_3_Figure_2.jpeg)

![](_page_3_Picture_3.jpeg)

![](_page_4_Picture_0.jpeg)

## 2004 Sandia LNG Safety and Risk Analysis Guidance Report

- Identify "scale" of hazards from an LNG spill over water
- Provide direction on use of hazard analysis techniques
- Provide direction on use of risk management to improve public safety
- Provide process for site-specific evaluations

![](_page_4_Picture_6.jpeg)

![](_page_4_Picture_7.jpeg)

### Risk-based Assessment Approach for LNG Spills over Water

![](_page_5_Figure_1.jpeg)

![](_page_5_Picture_2.jpeg)

![](_page_6_Picture_0.jpeg)

Chapter 6 of report provides guidance on assessing LNG terminal safety and security concerns:

- Site-specific conditions to consider
  - Iocation, environmental conditions, proximity to infrastructures or residential or commercial areas, and available resources
- Site-specific threats to evaluate
- Cooperating with stakeholders, public safety, and public officials to identify site-specific "protection goals"
- Appropriate modeling and analysis approaches for a given site, conditions, and operations
- System safeguards and protective measures to consider
- Identification of approaches to manage risks, through prevention and mitigation, enhancing energy reliability and the safety of people and property

![](_page_6_Picture_9.jpeg)

### **Common Deep Water Port Concepts**

![](_page_7_Picture_1.jpeg)

![](_page_7_Picture_2.jpeg)

![](_page_8_Picture_0.jpeg)

### **Growing size of LNG Vessels and Terminals**

| Class  | 145,000m <sup>3</sup> | 155,000m <sup>3</sup> | 215,000m <sup>3</sup> | 260,000m <sup>3</sup> | 300,000m <sup>3</sup><br>Terminal |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------------|
| Tanks  | 4-5                   | 4                     | 4 5 5                 |                       | 2-3                               |
| Length | 285 m                 | 290 m                 | 315 m                 | 345 m                 | Variable                          |
| Width  | 44 m                  | 45 m                  | 50 m                  | 55 m                  | Variable                          |
| Draft  | 11 m                  | 11.5 m                | 12 m                  | 12.5 m                | Variable                          |

![](_page_8_Picture_3.jpeg)

### Differences in Facilities Impact Hazards and Energy Delivery Issues

#### • Near-shore, On-shore

- Traffic control, safety zones, escorts to enforce
- Smaller threats but closer to people, infrastructure
- Smaller LNG ships smaller LNG tanks, less standoff, older designs and safety features
- Allows LNG storage
- Off-shore Deep Water Ports
  - Limited traffic control or enforcement
  - Larger threats but further from public
  - Larger ships more LNG, more standoff, new designs and safety features
  - Deliver to public as natural gas
- Combinations
  - Large vessels near-shore, small regasification vessels offshore

![](_page_9_Picture_13.jpeg)

![](_page_10_Picture_0.jpeg)

### **Behavior of LNG Pool Fires**

- Burn rate controls pool area and flame height
- Flame height decreases as pool diameter increases, with transition at very large diameters
- Hydrocarbons produce smoke, but production unknown for LNG pool fires >35 m diameter
- Lower flame height and smoke shielding combine to reduce the radiative heat flux levels for large spills

![](_page_10_Picture_6.jpeg)

Montoir - 35 m LNG pool fire

![](_page_10_Figure_8.jpeg)

![](_page_10_Picture_9.jpeg)

### Potential Thermal Hazards for Spills from Common LNG Vessels

| HOLE<br>SIZE<br>(m <sup>2</sup> ) | TANKS<br>BREACHED | DISCHARGE<br>COEFFICIENT | BURN<br>RATE<br>(m/s) | SURFACE<br>EMISSIVE<br>POWER<br>(kW/m <sup>2</sup> ) | POOL<br>DIAMETER<br>(m) | BURN<br>TIME<br>(min) | DISTANCE<br>TO 37.5<br>kW/m <sup>2</sup><br>(m) | DISTANCE<br>TO 5<br>kW/m <sup>2</sup><br>(m |  |  |  |
|-----------------------------------|-------------------|--------------------------|-----------------------|------------------------------------------------------|-------------------------|-----------------------|-------------------------------------------------|---------------------------------------------|--|--|--|
| ACCIDENTAL EVENTS                 |                   |                          |                       |                                                      |                         |                       |                                                 |                                             |  |  |  |
| 1                                 | 1                 | .6                       | 3X10 <sup>-4</sup>    | 220                                                  | 148                     | 40                    | 177                                             | 554                                         |  |  |  |
| 2                                 | 1                 | .6                       | 3X10 <sup>-4</sup>    | 220                                                  | 209                     | 20                    | 250                                             | 784                                         |  |  |  |
| INTENTIONAL EVENTS                |                   |                          |                       |                                                      |                         |                       |                                                 |                                             |  |  |  |
| 5                                 | 3                 | .6                       | 3 x 10 <sup>-4</sup>  | 220                                                  | 572                     | 8.1                   | 630                                             | 2118                                        |  |  |  |
| 5*                                | 1                 | .6                       | 3 x 10 <sup>-4</sup>  | 220                                                  | 330                     | 8.1                   | 391                                             | 1305                                        |  |  |  |
| 5                                 | 1                 | .9                       | 3 x 10 <sup>-4</sup>  | 220                                                  | 405                     | 5.4                   | 478                                             | 1579                                        |  |  |  |
| 5                                 | 1                 | .6                       | 8 x 10 <sup>-4</sup>  | 220                                                  | 202                     | 8.1                   | 253                                             | 810                                         |  |  |  |
| 12                                | 1                 | .6                       | 3 x 10 <sup>-4</sup>  | 220                                                  | 512                     | 3.4                   | 602                                             | 1920                                        |  |  |  |

\*Nominal case: Expected outcomes of a potential breach and thermal hazards based on credible threats, best available experimental data, and nominal environmental conditions for a common LNG vessel

![](_page_11_Picture_3.jpeg)

### Potential Dispersion Hazards for Spills from Common LNG Vessels

![](_page_12_Figure_1.jpeg)

Dispersion distances are limited by closest ignition source

![](_page_12_Picture_3.jpeg)

![](_page_13_Picture_0.jpeg)

Assessing LNG DWP terminal safety and security concerns:

- Site-specific conditions to consider
  - location, environmental conditions, proximity to shipping lanes, fishing areas and recreation areas, and available protection resources
- Site-specific threats large maritime ships, ease of access
- Identify "protection goals"- on-shore public, shipping, fishing, boating and recreation
- Appropriate modeling and analysis approaches for a given site, conditions, and operations
- System safeguards and protective measures available or can be incorporated
- Identification of approaches to manage risks to enhance energy reliability and safety of people and property

![](_page_13_Picture_9.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Picture_2.jpeg)

Potential Dispersion Distances From Large LNG Vessels or DWP– 200,000m<sup>3</sup> spill

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_2.jpeg)

![](_page_16_Picture_0.jpeg)

## LNG DWP Large Spill Risk and Hazard Conclusions

- Site-specific analysis of threats, conditions, and protection goals are always needed
- Existing consequence analysis methods are generally conservative for large spills
  - Use for screening, coordination of risk management approaches
  - Use to look at possible range of hazards
- The scale of the hazards to the public from a large LNG DWP spill is ~ 2 miles for fire and ~ 3-4 miles for a vapor dispersion
- Risk management approaches should be used to balance hazards and public protection

![](_page_16_Picture_8.jpeg)