

Oil Spill Summary from California Marine Terminals

Marc Chaderjian California State Lands Commission chaderm@slc.ca.gov

CSLC Oil Spill Prevention Program Activities

Monitor tanker & barge transfers Conduct annual terminal inspections Approve operations manuals Approve terminal training & selection programs Assure MOTEMS compliance Offer Safety Assessments Draw lessons learned from adverse events

Transfer Frequency & Spill Rate, 1994 - 2006

STATE LAND

ANFORNIA

Ò

MARINE FACILITIES

Are events leading to spills 'catchable' during transfer monitoring activity?

- Data: transfer related spills at marine terminals
- List of each contributing factor (active failures & latent conditions) for every spill
- For each factor: Could the factor be observed and prevented by inspection during transfer event (hook up through disconnect)?
- For each factor: Could the factor be observed and prevented by inspection during pre-transfer activities?

STATE LAND COMMI Are events leading to spills 'catchable' LIFORNIA during transfer monitoring activity? CATCHABLE DURING TRANSFER OPERATIONS R 王 TOTALS YES NO AB 8(6.7%) 20(16.8%) YES 28 NO 82 (68.9%) 9 (7.6%) 91 Т <u>5</u>2 TOTALS 17 102 119 ЧЧ К С Ч Ω

- Most events and conditions leading to spills are not 'catchable' by monitoring events between hook up & disconnect
- There may be some benefit to monitoring pre-transfer events and conditions
- Annual Inspections may provide a better opportunity to mitigate many spill contributing events and conditions

Comparing Low vs. High Consequence Incidents

STATE LAND

LIFORNIA

COMM

- Do factors that lead to low consequence incidents also lead to high consequence incidents?
- Which factors distinguish low from high consequence events?
- Lessons learned for reporting and analyzing incidents

	A L inn a l	Chevron Hawaii (1979)	John Goode (1950)	OMI Charger	TTT 103 (1986)	Poling #9 (1982)	Sansinena (1976)	Laura D'Amato (1999)
	Term Sp	(1373)	(1300)	(1300)				(1333)
Active Failures (% of 86 identified)								
Structural/Mechanical failure	39.5			X				
Operator Violation	13.9		Х	Х				Х
Operator Slip/Mistake	46.5			Х	Х	Х		Х
Latent Conditions (% of 80 identified)								
Operator Condition/Knowledge	13.8	Х	Х	Х	Х	X	Х	
Coordination/communications	15.0			Х				Х
Maintenance/Design	28.8		Х	Х			Х	Х
Op. Oversight	18.8		Х	Х				Х
Plans/Procedures/Policy	13.8	Х	Х	Х	Х	Х		Х
Resource Mgt./Safety Climate	10.0			Х			Х	
Outside Influence – Uncontrollable Event	0.01	Х				Х	Х	
Accepted Risk	?	Х		X	X	X	Х	

Comparing Low vs. High Consequence Incidents: Findings

STATE LAND.

LIFORNIA

- Factors leading to low consequence incidents also lead to high consequence incidents
- Uncontrollable events may be an important factor distinguishing low from high consequence events
- Chance: often necessary but not sufficient
- Describing 'accepted' risks provides an opportunity for lessons learned