Ballast Water Treatment Retrofit A Case Study and Reality Check

Spencer Schilling

Vice President, Naval Architect Herbert Engineering Corp. Alameda, CA USA

September 11, 2001

Outline of Topics

- Review of Design Study
- Planned Installation
- Installation Time Line and Difficulties/Realities of shipboard work on the fly
- Cost and Schedule drivers
- Equipment issues
- Cost to date/status

Full Scale Design Studies of Ballast Water Treatment Systems

Study by: Glosten - Herbert LLC and Hyde Marine for the

Great Lakes Ballast Technology Demonstration Project

Sponsors: Northeast-Midwest Institute and the Lakes Carriers Association

Study Focus

Scope of Study

- Develop flow-through on-board treatment systems for Two "Target Vessels:"
- Develop Life Cycle Costs
- Use currently available technologies

Target Vessels

<u>Design Study #1</u> "Vessel of at least 10,000 MT Displacement" POLAR ENDEAVOUR

> Design Study #2 2000 TEU or Greater Containership Regularly Calling on U.S Port R.J. PFEIFFER

Treatment System Requirements

- Maximizes kill and/or inactivation rate
- Minimizes adverse effects on environment
- Minimizes changes to the vessel's existing ballast system and process
- Minimizes initial and life-cycle costs
- Designed for shipboard marine environment
- Meets existing safety standards

Selected Treatment Systems

- Cyclonic Separation
- Ultra-violet (UV) Light Irradiation
- Filtration with Backflush
- Chemical Biocide Injection

Polar Endeavour

Type:125,000 Dwt Crude Oil Carrier in TAPS TradeOwner:Polar Tankers, Inc.L x B x D:273m x 46m x 25.3mDWT:127,005 MTBallast Cap:60,700 m³Ball. Pumps:2 @ 2,860 m³/hr mains, 2@1,000 m³/hr aftNo. Ball Tks:6 pairs + 1 fo'c'sle + 4 aft tanks

Polar Endeavour Ballast Treatment Systems

- Primary System Cyclonic Separator
- Secondary System UV Radiation on intake and discharge
- Alternate System Chemical Treatment
 - Use in addition to or instead of Primary and Secondary
 - SEAKLEEN Biocide

Type:2,420 TEU
Container ShipOwner:Matson NavigationL x B x D:217m x 32m x 20mDWT:28,758 MTBallast Cap:14,600 m³Ball. Pumps:2 @ 350 m³/hrNo. Ball Tks:26

Ballast Treatment System Options

- Option 1:
 - Primary System Cyclonic Separator
 - Secondary System Ultraviolet Radiation
 - UV irradiation on intake and discharge
- Option 2:
 - Primary System Filtration with Backflush
 - Secondary System Ultraviolet Radiation
 - UV irradiation on intake and discharge

Selection of Treatment Type Cyclonic Separator over Filtration with Backflush

- Shipboard service experience with automatic backflushing filters limited
- Crew maintenance/monitoring req'ts
- Capital and lifetime costs
- Filters require more space in ER
- No current efficacy standards

System Equipment and Installation

- Cyclonic Separator Microkill HRN 350
 - 265-490 m³/hr
- V Unit Microkill LP400-16-200
 - 350 m³/hr, 16 lamps, 24 VAC 3A
- Installed on starboard ballast pump only
- Installation at ER floor plate level, outboard of Main Engine

10" ballast lines & valves, 2" sludge overb'd
 Controls/monitoring integrated with ballast control system

R.J. Pfeiffer Main Ballast System Diagram

Starboard Side Only

R.J. Pfeiffer System Operation & Monitoring

- Designed for unattended ER operation
- All control / monitoring in ballast control office
- Open/close (3-6) additional motor operated valves
- Turn UV system on and monitor performance
- Use UV at intake and discharge
- Avoid deep ocean exchange

R.J. Pfeiffer Life Cycle Cost Summary

	Installation	Life Cycle	Present Value	Uniform Equivalent	Tons of Ballast	
ltem	Cost	(LC)Cost	of LC Cost	Annual Cost (AAC)	Pumped/year	Cost / Ton
Cyclonic Separator and UV Treatment	\$358,000	\$596,000	\$429,000	\$44,000	13,000	\$3.38
Filter and UV Treatment	\$375,000	\$832,000	\$511,000	\$52,000	13,000	\$4.00

R.J. Pfeiffer Planned Installation

- Matson Agreed to go forward with the installation as a test platform
- The R. J. Pfeiffer was successfully and easily carrying out ballast exchange
- Partial funding form the State Land
 Commission was provided \$100,000
- Matson budgeted an additional \$250,000 and committed crew time and other resources

Original Time Line Equipment Installation 2001

May 1 - Decision to proceed
June 26 - ship at shipyard for piping work
August / October - complete installation while ship in service
November - System Efficacy Testing

Schedule drivers

 June 6, 2001 – last port call before shipyard, valves/piping ordered and on board

 Installation work to be accomplished while ship in service during 1-2 day port calls every 2-5 weeks or during 1 day coastal run

 October 2001 U/V and Separator arrive in LA, some equipment still tied up in customs

Achieved Milestones

- July 16, 2001 only about 20% of pipe installed at shipyard
- ♦ Aug. 2, 2001 1st port call, ship in 5 week service
- Oct. 8, 2001 U/V and Separator arrive, must be loaded from barge because stores crane outboard only
- Oct. 11, 2001 decide to move U/V unit
- Oct. 17, 2001 meet with ABS regarding equipment approvals

Achieved Milestones (cont'd)

- Oct. 2001 ship enters 2 week HI service
- Dec. 12, 2001 about 85% of piping fitted and removed for galvanizing
- Feb. 13, 2002 start cabling for valve controls and automation
- ♦ Mar. 25, 2002 finished piping
- ♦ Apr. 10, 2002 first system tests
- Apr. 22, 2002 scientists on board for efficacy testing, seal leaks and tube breakage stop tests

Achieved Milestones (cont'd)

- June 19, 2002 manufacturer completes modifications
- July 2, 2002 scientists load test gear, system still not functioning and tests canceled
- July 31, 2002 manufacturer decides to remove U/V unit and replace with different design.
- Dec. 2002 expected availability of new U/V unit

Costs To Date

Total Budget about \$350k Spent to date about \$385k

Summary

Even "currently available" technology isn't

- Still in prototyping stage
- Retrofits can be complex, costly and time consuming
 - Even when space is available piping and controls are not trivial
 - Difficult to do when ship in service
- Class Societies do not provide oversight of these non-essential systems

Ballast Water Treatment Retrofit A Case Study and Reality Check

Spencer Schilling

Vice President, Naval Architect Herbert Engineering Corp. Alameda, CA USA

September 11, 2001