Prevention First 2016

Upgrades & MOTEAMS Seismic Retrofit of the Shell Martinez Refinery Marine Terminal, Martinez, California

Craig Bambach, Production Supervisor
Capt. Roy Mathur, Wharfmaster
Shell Oil Products US

William Bruin, P.E., Senior Principal
Simpson Gumpertz & Heger Inc.
Presentation Outline

• Discuss MOTEMS & Project Upgrades
• Lessons Learned
Shell Martinez Refinery MOT
MOTEMS & Project Upgrades

- Fender System Upgrade
- Mooring Hook Upgrade
- MOTEMS Seismic Retrofit
 - Approach Trestle
 - Loading Berths
New Fenders on Wharf
Lease Requirements on Shell Wharf
Lease Requirements for Shell Wharf
Mooring Hooks
Loading Berth Seismic Upgrade

– Existing Structure
 • 20” square, prestressed concrete piles
 • Precast/CIP deck perimeter
 • Prestressed deck ‘K’ struts
MOTEMS Seismic Deficiencies

• Risk of Progressive Collapse at L2 EQ
 – Batter piles fail in tension
 – Large lateral displacements
 – Failure of plumb piles
 – Potential for oil spill
Seismic Mitigation Goals

• Full MOTEAMS L2 seismic compliance
• After earthquake …
 – No oil spill
 – Life-safety
• Maintain current operational function
• Minimal disruption of …
 – Environment
 – Operations … during construction
Project Constraints

- Continued operations
- Remains of old wharf
- Environmental in-water work windows
 - Salmonoids
 - Clapper Rail
- Construction access
 - Approach trestle w/ 4-ton load limit
 - Shallow backside < 5’ draft (MLLW)
Concepts Considered

- New Platform $$$
- Strengthen inside of wharf footprint
- Strengthen outside of wharf footprint

feasibility/disruption
Seismic Dolphin Concept

• “Catch” Loading Berth to …
 – Limit lateral displacement
 – Allow (e)batter piles to fail

• Prevent …
 – Failure of plumb piles
 – Catastrophic collapse

• Utilizes typical batter pile pairs
 – Relatively stiff system
 – Axial capacity limited by soil
Seismic Analysis

- Independent model for each Loading Berth

- Nonlinear Static Demand Procedure (Pushover)
 - Substitute Structure Approach
 - Coefficient Method
Final Strengthening Scheme

- 11 Seismic Dolphins
- Plumb Pile FRP
- Deck Beam FRP
- 8 Isolation Pile Caps
Isolation Pile Caps

- 8 caps per Loading Berth
- Provide gravity support only
- UHMW to minimize lateral loads
Plumb Pile FRP

- Increase confinement
- Higher P-M capacity
- Horizontal fibers

- Address (e)Build-ups:
 - Strengthen splice
 - Longitudinal fibers
Plumb Pile FRP

• Movable work platform
 – Eliminated scaffolding
 – More access than scaffolding
 – Improved installer safety
 – Easy repositioning
 – Eliminated need for divers
Deck Beam FRP

- Localized shear strengthening
- Minimize impact to pipelines and conduit
- U-shaped
- ACI 440.2R-08
Finished Deck Beam FRP
Soil Explorations

- **1963 Data**
 - 8 borings; 60-90’ below ML

- **2013 Data**
 - 4 borings; 108-121’ below ML
 - 6 CPTS
Results of Geotech Evaluation

- Lower response spectrum
- Refined soil springs, 7 discreet regions
- Discovered, prepared for, alluvial channel
- Fewer Piles
 - 12 less at Downstream
 - 14 less at Upstream
 - 26 less piles \(\rightarrow 17\%\) reduction
Pile Stingers

- 5’ typical; 20’ in alluvial channel
- Improves driveability
- Penetration through debris
- Optimize skin friction, weight
Dolphin-to-Deck Connection

- Custom designed pipe anchor connection
- Eliminated “Swiss Cheese” connection
- Easy installation, flexibility to avoid rebar
Pile Driving

(Batter) Pile Handling/Alignment
Overhead Interferences

Scheduling (vessels & tides)
Dolphin Installation

• Template ➔ Falsework • Rebar Pre-fab
Finished Dolphins
Project Status Today

- Berth 2 completed
- All FRP work completed
- Berth 1 pile driving underway
- Expect full operations to be maintained during Berth 1 construction
Additional Lessons Learned

• Good Owner-Contractor-Engineer team = Project success!
• Good geotechnical data improves pile design
• Contractor needs well defined work rules/limits/boundaries
• Be flexible – Vessel traffic is fickle
Thank you!