

Seismic Evaluation of Nonstructural Components and Non-Building Structures

Rakesh K. Goel, PhD, PE, F.ASCE, F.SEI Cal Poly, San Luis Obispo rgoel@calpoly.edu

Objectives

- Review specifications in current MOTEMS
- Identify needs for improvement
- Recommendations

- 3104F.5.3: Fire protection, emergency shutdown, electrical power systems
 - Reference documents
 - New None
 - Existing CalARP (CalARP refers to ASCE 7)
 - Evaluation for survivability and continued operations during Level 1 earthquake

- 3108F.7: Fire detection, fire protection, emergency shutdown
 - 3104F.5.3 for assessment Reference documents
 - New None
 - Existing CalARP (CalARP refers to ASCE 7)
 - 3110F.8 for anchorage and support Reference documents
 - New FEMA 450
 - Existing Cal ARP, ASCE Guidelines 2011 (both refer to ASCE 7), or FEMA 356

- 3109F.4: Piping and pipelines
 - Reference documents
 - New ASCE Guidelines 2011 (refers to ASCE 7)
 - Existing CalARP (refers to ASCE 7) or FEMA 356

- 3110F.2.1: Marine Loading Arms
 - Reference documents
 - New 2CCR 2380, 33CFR 154.5 and OCIMF
 - Existing 2CCR 2380, 33CFR 154.5 and OCIMF
 - 33CFR indirectly refers to ASCE 7
 - OCIMF is outdated because it refers to UBC

- 3110F.8: Equipment anchors and supports
 - Reference documents
 - New FEMA 450
 - Existing Cal ARP, ASCE Guidelines 2011 (both refer to ASCE 7), or FEMA 356

- 3110F.11: Critical systems seismic assessment
 - 3104F.5.3 for assessment Reference documents
 - New None
 - Existing CalARP (CalARP refers to ASCE 7)
 - 3110F.8 for anchorage and support Reference documents
 - New FEMA 450
 - Existing Cal ARP, ASCE Guidelines 2011 (both refer to ASCE 7), or FEMA 356

- 3111F.11: Electrical systems
 - 3104F.5.3 for assessment Reference documents
 - New None
 - Existing CalARP (CalARP refers to ASCE 7)
 - 3110F.8 for anchorage and support Reference documents
 - New FEMA 450
 - Existing Cal ARP, ASCE Guidelines 2011 (both refer to ASCE 7), or FEMA 356

Summary of Current MOTEMS

- Three main reference documents
 - FEMA 450, FEMA 356, and ASCE 7
 - Several other documents (e.g., Cal ARP, ASCE Guidelines 2011, and 33CFR refer back to ASCE 7)
 - OCIMF for Marine Loading Arms is outdated
 - Refers to UBC
- Seismic provisions are spread over multiple chapters
- Lack of clarity on design level earthquake
- Silent on seismic design and assessment of control rooms and other building-like structures mounted on deck

$$F_{p} = \frac{0.4a_{p}S_{DS}W_{p}}{\frac{R_{p}}{I_{p}}} \left(1 + 2\frac{z}{h}\right)$$

$$0.3S_{DS}I_{\rho}W_{\rho} < F_{\rho} < 1.6S_{DS}I_{\rho}W_{\rho}$$

 S_{DS} = Short period spectral acceleration

 a_p = Component amplification factor

 I_p = Component importance factor

 R_p = Component response modification factor

 W_p = Component operating weight

z = height in structure of point of attachment of component with respect to base

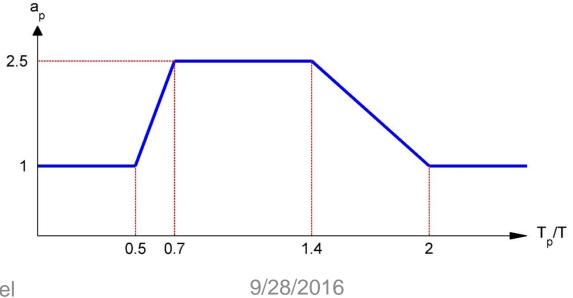
h = average roof height of structure with respectto the base

- Amplifies ground acceleration, represented by 0.4S_{DS}, by a factor of (1+2z/h): maximum factor of 3
- Further amplifies acceleration due to flexibility of the component itself by a factor of a_D

© R.K. Goel 9/28/2016 13

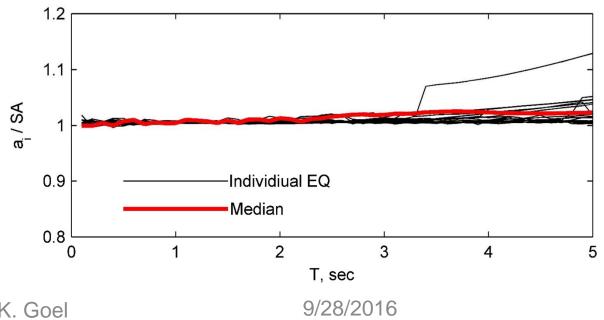
- R_p and a_p values are provided in tables
- $a_p = 1$ for rigid components;
- $a_p = 2.5$ for flexible components
 - Lower value permitted if justified by detailed dynamic analysis
- Types of nonstructural systems included in these documents differs
 - R_p values also may differ slightly

FEMA 450 and ASCE 7 Alternate Equation


 If acceleration, a_i, at the point of attachment of the component can be computed from modal (or response spectrum) method

method
$$F_{\rho} = \frac{a_i a_{\rho} W_{\rho}}{R_{\rho} A_{x}}$$

ASCE 7 Alternate Procedure to Estimate a_p


• If fundamental period of the structure, T, and of the component, T_p , are know, a_p may be estimated from

Relationship between a_i and SA

 For low damping values (e.g., 5%), a_i for a SDF system is essentially equal to spectral acceleration

© R.K. Goel 17

Estimation of a_i

- Marine Oil Terminals are, in most cases, similar to single-degree-of-freedom (SDF) systems
- Damping is typically low (5%)
- For such cases, a_i = spectral acceleration for design earthquake

Recommendations

- Consolidate seismic provisions for nonstructural components
- Compute design forces for MOTEMS Level 2 earthquake
 - I_p = 1.5 may be used for critical components to ensure survivability at Level 1 earthquake
- If needed, replace 0.4S_{DS} with PGA for MOTEMS design earthquake
- When appropriate, use alternate method with a_i = SA for design earthquake
- When structural and component periods are available, estimate a_p from provided figure

Other Recommendations

- Professionals connected to seismic design of piers and wharves should
 - Identify types of nonstructural and non-building structures typical for Marine Oil Terminals
 - Develop consensus a_p and R_p values if needed
 - Prepare a standard of its own, instead to referring to ASCE 7, if needed