NEW PIANC GUIDELINES FOR MARINE OIL & PETROCHEMICAL TERMINAL DESIGN

Ron Heffron, P.E.
Presentation Outline

• Need and Purpose
• History and Background
• Scope
• The Team
• Content of the Guidelines
• Conclusion
Need and Purpose

• Over 5,000 marine oil & petrochemical terminals globally
• But no internationally recognized standards
• Properly designed facilities can serve 50+ yrs
• Improper design can have disastrous consequences
• Proactive maintenance pays off
Need and Purpose

“Recommendations for the Design and Assessment of Marine Oil & Petrochemical Terminals”

- Voluntary guidance, not regulatory
- Written by industry, for industry
History and Background

Building on Existing Documents:

• Waterfront Design Standards of Several Countries
 • Not specific to marine oil & petrochemical terminals

• Oil Company Standards
 • Not publicly available; not globally recognized

• Industry Standards (OCIMF, ISGOTT, etc.)
 • Touch on aspects but not comprehensive
 • Mostly operationally focused

• California Marine Oil Terminal Engineering & Maintenance Standards (MOTEMS)
 • Applicable to the State of California
MOTEMS

- Published in 2005
- Focused on existing as well as new design
- First comprehensive standards, including seismic upgrades
 - Inspection, above and underwater
 - Mooring & berthing
 - Structural/geotechnical/seismic
 - Mechanical/electrical/piping
 - Fire protection
Scope of New Guidelines

• Target Audience:
 • Designers of new terminals
 • Engineers charged with inspecting, rehabilitating and upgrading existing terminals
 • Owners and operators of terminals
 • Lessors and Lessees of third party terminals
 • Marine terminal equipment manufacturers
Scope of New Guidelines

- Applicability:
 - Existing and new marine oil & petrochemical terminals
 - At-shore and Nearshore terminals
 - Sea island terminals

- Limited to marine infrastructure and ship/shore interface
 - Excludes tank farms and shoreside pipelines

- Excludes LNG terminals, floating facilities and SPMs/MBMs
The Team

- 22 members representing 12 countries:
 - Australia
 - Belgium
 - France
 - Indonesia
 - Japan
 - Kazakhstan
 - Netherlands
 - Norway
 - Singapore
 - Spain
 - United Kingdom
 - United States
The Team

Representing:
• Energy companies
• Consulting engineers
• Former regulators
• Equipment manufacturers
• Academia

Disciplines:
• Civil/structural
• Coastal/ocean
• Shipping
• Geotechnical
• Electrical/instrumentation
• Mechanical/piping
• Fire protection
• Risk management
• Compliance
USA Team Members

Ron Heffron – M&N (Chairman)
Bill Asante – ExxonMobil (representing OCIMF)
Martin Eskijian – Independent Consultant/M&N
Gayle Johnson – SGH
Jerk Kocijan – SGH
Luis Palacios - SGH
Part I – Design of New and Upgrade of Existing Terminals

- Functional Requirements, Basis of Design and Design Phases
- Risk and Hazard Analysis
- Scope and Layout
- Structural Design Codes, Loads and Load Combinations
- Mooring and Berthing
- Structural Materials and Construction
- Geotechnical Design
- Seismic Design
- Piping and Pipelines
- Mechanical Equipment
- Electrical Systems, Instrumentation & Controls
- Fire Protection and Emergency Evacuation
Part II – Inspection and Assessment of Existing Terminals

- Records, Baseline Inspection and Assessment
- Reassessment of Existing Facilities
- Periodic Inspections
- Post-Event Inspection
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Functional Requirements, Basis of Design and Design Phases
 • Concept of Operations
 • Defines the Objectives of the Facility, Including Operational Requirements
 • Functional Requirements
 • Throughput parameters
 • Storage capacity
 • Crude or product mix
 • Number of berths
 • Anticipated occupancy
 • Site Characteristics
 • Basis of Design
 • Design life
 • Vessel characteristics
 • Applicable codes
 • Basic terminal dimensions
 • Proximity issues
 • Loading requirements
 • Equipment requirements
 • Construction phasing
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Risk and Hazard Analysis
 • Data Gathering and Hazard Identification
 • Structured Method of Identifying and Evaluating Project Risk Issues
 • Quantitative Risk Assessment Method and Risk Contour
 • Key Risk Parameters Include:
 • Geographic risks
 • Environmental hazards
 • Port traffic
 • Vessel-specific issues
 • Human factors
 • Product transfer
 • Security
 • Exclusion Zones
 • Security Risk Mitigation/Intl Ship and Port Facility Code Requirements
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Scope and Layout
 • Siting and Layout Considerations
 • Hazardous Area Classification Layout Considerations
 • Navigation and Vessel Maneuvering
 • Overall Configuration Issues
 • Terminal dimensions
 • Depths
 • Elevations
 • Emergency egress
 • Interface Management Issues
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Structural Design Codes, Loads and Load Combinations
 • Load and Load Combinations Tailored to Marine Oil & Petrochemical Terminals
 • Load and Resistance Methodology is Unique to Specific Design Codes and Jurisdictions
• Guidance Provided For:
 • Europe
 • American
 • General Guidance for Others
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Mooring and Berthing
 • Philosophy of Design
 • Description of Function Behind Mooring System Components
 • Analysis Methodology, Analysis Tools, Procedures, and Boundary Conditions
 • Guidance for Load Determination
 • Wind
 • Waves
 • Current
 • Seiche
 • Tsunamis
 • Snow
 • Ice
 • Design Guidance for Mooring Components
 • F_ZA Equation
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Mooring and Berthing
 • Structural Design of Support Structure(s)
 • Fail-safe progressive failure philosophy
 • Use vessels with strongest mooring line MBLs to determine WRH SWL
 • Use SWL to determine loads on structure
 • Exception may be appropriate where MBLs are higher than required for design of the MOPT
 • Design must prevent sudden failure or breakout of equipment/hooks
 • European Union vs United States approach

• Zagreb Accord

\[F_{ZA} = SWL \times (1.0 + 0.6 \times (n-1)) \]
[Equation 7-1]
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

- Structural Materials and Construction
 - Structural Materials
 - Pile-supported Structures
 - Concrete Caissons
 - Cellular Sheet Pile Structures
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Geotechnical Loads, Hazards and Criteria
 • Geotechnical Risk Registry and Risk Management Plan
 • Guidance for Geotechnical and Geophysical Site Investigations
 • Guidance for Establishing Site-Specific Design Criteria
 • Static loading
 • Dynamic loading
 • Dredge material management
 • Settlement
 • Seismic loading
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Seismic Design
 • Design Philosophy
 • Difference between MOPT Practice and Conventional Building Codes
 • Performance Levels
 • Earthquake Motion Level
 • Classification of Structures
 • Acceptable Levels of Damage
 • Definition of Damage Levels
 • Seismic Analysis Methods
 • Topsides Systems
 • Seismic Detailing
 • Evolving Issues
 • Multiple Earthquakes
 • Combination of Mooring and Earthquake Loads
 • Combination of Inertial and Kinematic Loading
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Piping and Pipelines
 • Guidance for Determining Loads and Displacements
 • Operational
 • Thermal
 • Transient
 • Seismic
 • Piping Systems Included
 • On top of jetty/quay
 • Piping immediately upland of marine terminal
 • Subsea pipelines
 • Components Addressed
 • Pigging
 • Stripping and sampling
 • Corrosion protection
 • Vapor control
 • Fire suppression
 • Sump/drainage
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Mechanical Equipment
 • Guidance for Determining Loads
 • Marine transfer arms
 • Hose handling equipment
 • Unloading equipment
 • Vessel access equipment
 • Fire protection equipment
 • Miscellaneous equipment and systems
 • Guidance for Selecting Equipment
 • Features and options
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Electrical Systems, Instrumentation & Controls
 • Electrical Design Philosophy
 • Design and Equipment Selection
 • Guidance on Hazardous Area Classification
 • Guidance on System Design
 • Power supply and distribution
 • Emergency back-up power
 • Emergency shutdown
 • Lighting protection
 • Grounding
 • Lighting and navigation aids
 • Cathodic protection
 • Instrumentation and control
Content of the Guidelines – Part I
Design of New and Upgrade of Existing Terminals

• Fire Protection and Emergency Evacuation
 • Guidance on Standards, Types of Fires, and Typical Extinguishing Materials
 • Fire Prevention and Isolation
 • Materials, spacing, ignition sources
 • Focus on isolation
 • Alarm and Signaling Systems
 • Fire Detection
 • Smoke, gas & flame detection
 • Alarm and signal systems
 • Fire Suppression
 • Emergency Egress
Content of the Guidelines – Part II
Inspection and Assessment of Existing Systems

• Records, Baseline Inspection and Assessment
 • Guidance for Record Keeping
 • Terminal layout drawings
 • Structural record drawings
 • Berth operational parameters and limits
 • Water depth
 • Fender system details
 • Mooring points
 • Mechanical and electrical systems
 • Fire protection systems
 • Guidance for Baseline Inspections
Content of the Guidelines – Part II

Inspection and Assessment of Existing Systems

- Reassessment of Existing Facilities
 - Guidance on “Triggers” for Assessment
 - Functional Changes at Terminal
 - Change in vessel size (sail area, deeper draft)
 - Change in water depth (and resulting allowable vessel draft)
 - Equipment upgrades for code compliance
 - Increase of loads due to dual-purpose use or new equipment
 - External factors such as new large vessels passing terminal
 - Issues Arising through Vetting or from the Purchase or Lease of a Terminal
 - Significant Deterioration
 - Extraordinary Events
 - Water Level and Channel Bottom Changes
 - Regulatory Compliance
Content of the Guidelines – Part II

Inspection and Assessment of Existing Systems

• Periodic Inspections
 • Choosing an Inspection Philosophy
 • Time-based inspection philosophy
 • Risk-based inspection philosophy
 • Limits of Inspection
 • Structural Boundaries, Components and Systems
 • Guidance on:
 • Inspection frequency
 • Inspection team qualifications
 • Scope of the inspection effort
 • Evaluation and ratings
 • Follow-up activities
 • Documentation
 • Reporting
Content of the Guidelines – Part II
Inspection and Assessment of Existing Systems

• Post-Event Inspections
 • Guidance on Providing “Fitness for Purpose” Inspections After Event
 • Accidental or Environmental Events:
 • Vessel impact
 • Earthquakes
 • Cyclones
 • Fire or explosion
 • Flooding
 • Tsunamis or other high wave events
 • Additional Guidance:
 • Qualifications of the inspection team
 • Scope and focus of the inspection effort
 • Rating system
 • Follow-up activities
What’s Next?

• PIANC Working Group 153
 • Group Lives On!
 • Update to Incorporate LNG Terminals
 • Updates to Address Issues and Feedback
How to Order

PIANC Website:
http://www.pianc.org/edits/technicalreportsbrowseall.htm#MarCom
Questions?

Ron Heffron, P.E.
rheffron@moffattnichol.com

RECOMMENDATIONS FOR THE DESIGN AND ASSESSMENT OF MARINE OIL AND PETROCHEMICAL TERMINALS

The World Association for Waterborne Transport Infrastructure