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Abstract 
We review our studies of free-surface wave patterns generated by underwater objects in 
the context of potential flow assumptions. Two numerical approaches for the time-
domain simulation of nonlinear wave-body interactions are applied: a high-order spectral 
(HOS) method and a hybrid method. HOS is developed based on the perturbation theory 
and the use of the pseudo-spectral approach for the treatment of nonlinear free-surface 
boundary conditions. It accounts for nonlinear wave-wave and wave-body interactions up 
to an arbitrary order in the wave steepness, and achieves an exponential convergence of 
the solution with respect to the order of nonlinearity and the number of unknowns for 
moderately steep waves. Significantly, it enables an efficient simulation of nonlinear 
wave-body interactions and high-resolution description of free-surface features. It is, on 
the other hand, restricted to smooth closed bodies (such as ellipsoids). The hybrid method 
extends HOS by combining it with a boundary-element approach so that it is applicable 
to bodies with arbitrary geometries and vortex shedding. Three numerical examples, a 
forward moving ellipsoid in incoming waves, an underwater foil in unsteady motion, and 
a moored near-surface buoy in surface waves, are presented with the focus on the 
characteristics of the generated wave patterns.    
 
1. Introduction 
Recent development in remote sensing technology suggests a novel paradigm to detect 
underwater objects based on the characteristics of wave patterns of submerged bodies 
which may be extracted from the scanned free surface. The biological inspiration of this 
comes from the fishing bat (Noctilio leporinus). Using echolocation, the fishing bat hunts 
for fish swimming near the water surface by detecting ripples on water surface left by 
these fish.  
 
To detect and identify underwater objects by analyzing their free-surface signatures, it is 
essential to understand the correlation between the generated surface wave patterns and 
the basic characteristics of the objects in question, e.g., size, geometry, submergence, and 
motion.  
 
Numerical simulation provides a convenient and versatile mean to accurately predict the 
interaction between free-surface waves and submerged bodies. It requires a numerical 
model capable of computing with high resolution the nonlinear free-surface waves 
generated by a submerged body both in near and far fields. To this end, we employ the 
high-order spectral (HOS) method. HOS employs a perturbation analysis via a recursive 
algorithm to account for free-surface nonlinearity up to an arbitrary order in wave 
steepness. By using a pseudo-spectral treatment of the nonlinear free surface boundary 
conditions, HOS enables high-resolution representation of the free surface evolution. In 
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this approach, the computational error declines exponentially with respect to N, the 
number of unknowns, while with Fast-Fourier Transformation (FFT) the computational 
effort is proportional to NlogN. Owing to these valuable features, the HOS method has 
been successfully applied to problems where the accurate solution of nonlinear free-
surface effects is essential, including  nonlinear wave-wave interactions (Dommermuth & 
Yue, 1987), nonlinear wave-body interactions (Liu, Dommermuth & Yue, 1992), and 
nonlinear wave instability (Zhu, Liu & Yue 2003). In this paper, the key procedure of 
HOS for nonlinear wave-body interactions is outlined.  
 
We point out that in its original formulation, HOS is only valid for problems involving 
closed body geometry and no vorticity shedding from the body. To overcome this, we 
develop a hybrid method that combines the spectral approach for high-resolution 
representation of free-surface waves and a boundary-element method for the treatment of 
arbitrary body geometry and vortex shedding (Zhu, Liu & Yue 2006). The fully-coupled 
interactions among the body (such as a foil), the shed vortex in the wake, and surface 
waves are considered. The wakes, originated from sharp trailing edges on the body, are 
modeled as shear layers, or, equivalently, normal dipole distributions on thin sheets. The 
linear free-surface effects are accounted for by utilizing a highly efficient spectral 
algorithm. Like HOS, this method achieves exponential convergence with respect to the 
number of free-surface modes and requires a (approximately) linear computational cost 
with the number of unknowns. We note that although nonlinear free surface effects can 
be considered as in HOS, at this stage, only linear effect is accounted for in the hybrid 
method.  
 
Applying the HOS method and the hybrid method, in this paper, we study the generation 
of free-surface waves by three different near-surface objects: a spheroid moving forward 
in head sea; a buoy tethered by highly-extensible cable; and a foil undergoing translation 
and oscillation. For each case, simulations are conducted to illustrate the free-surface 
signatures at various conditions. 
 
2. Mathematical formulations 
We consider the problem of three-dimensional nonlinear wave-body interactions in deep 
water. The body is submerged below the free surface. The body may undergo forced 
steady and/or unsteady motions and freely respond to the action of ambient surface 
waves. The fluid, bounded by the free surface and the body surface, is assumed to be 
inviscid and incompressible, and the flow is irrotational. A space-fixed Cartesian 
coordinate system (x,y,z) is employed with the origin placed on the mean free surface, x 
and y the horizontal coordinates, and z  positive pointing upward. 
 
We define a velocity potential ),,( tzxΦ  in the fluid domain, where ),( yx≡x  is the 
horizontal coordinate.  At any time t, Φ  satisfies Laplace equation in the fluid domain 
and the kinematic and dynamic boundary conditions at the free surface fS  located at 

),( tz xζ= .  The free-surface boundary conditions can be written in Zakharov’s form 
(Zakharov, 1968):  
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where )),,(,(),( ttts xxx ζΦ≡Φ  is the free-surface potential, )/,/( yxx ∂∂∂∂≡∇ , 
and g the gravitational acceleration. 
 
On the body surface bS , the no-flux condition is satisfied 

),,,( tzb xVnn ⋅=Φ∇⋅                                                                                                        (2) 
where n  is the unit normal vector which points into the fluid and bV  is the velocity of the 
body at the point in question.  At any location on the body surface with sharp trailing 
edges, the Kutta condition is imposed so that the flow leaves these edges smoothly. In 
deep water, the fluid velocity vanishes, ∇Φ → 0 as z → −∞. For computations, a doubly 
periodic boundary conditions on the horizontal plane can be specified so that the problem 
is periodic in both x and y. 
 
3. Numerical methods 
3.1 High-order spectral method 
Perturbation expansion 
In HOS, we consider the wave-body interaction problem with small wave steepness 
( 1<<= εkA , where k is the wavenumber and A is the wave amplitude) and expand the 
potential Φ in a perturbation series up to order M inε : 
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where the superscript (m) denotes a quantity in )( mO ε . We further expand the potential 
evaluated on the instantaneous free-surface ζ=z  into a Taylor series about the mean 
free surface 0=z . Collecting terms at each order we obtain a sequence of Dirichlet 
conditions: 
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Correspondingly, on the instantaneous body surface bS (t), by expanding the no-flux 
condition (2) we have a sequence of Neumann conditions: 

)()1( tVbnn =Φ  and 0=Φ )(m
n , (for 1>m ).                                                                           (5) 

 
At each order m, the linearized boundary-value problem (BVP) for )(mΦ  includes 
Laplace equation 0=Φ∇ )(m  inside the fluid flow, the Dirichlet condition (4) on the mean 
free surface, the Neumann condition (5) on the body surface, and the deep water 
condition 0)( →Φ∇ m  as −∞→z . 
 
Spectral solution of the linearized BVP 
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To solve the BVP for )(mΦ  we distribute dipoles )(mμ  on the mean free surface and 
sources )(mσ  on the instantaneous body surface bS . In the spectral approach, we write 

)(mμ  in a double Fourier series (in x and y) and )(mσ  in a Chebyshev-Fourier series (Liu, 
Dommermuth & Yue 1992; Zhu et al 1999). The perturbed potential )(mΦ  is then 
expressed as 

∑∑ ∑∑ Ψ+Ψ=Φ
p q k l

Bkl
m

klFpq
m

pq
m zzttz ),x(),x()(),,x( )()()( σμ ,                                         (6) 

where )(m
pqμ  and )(m

klσ  are the (unknown) dipole and source modal amplitudes, 
respectively, and FpqΨ  and BklΨ  are the free-surface/body basis functions. The exact 
forms of FpqΨ  and BklΨ  are provided in Zhu et al. (1999). Substituting (6) into the 

boundary conditions (4) and (5), we can determine the modal amplitudes )(m
pqμ  and )(m

klσ , 

and subsequently, )(mΦ  from (6). The total velocity potential Φ  is obtained by solving 
the BVP up to a prescribed order M, and summarizing )(mΦ . 
 
Time integration 
At each time step t, the free-surface potential sΦ  is known. Using HOS described above 
we obtain the velocity potential Φ  anywhere in the flow, as well as the vertical velocity 
at the free surface ),,x( tz ζΦ . A fourth-order Runge-Kutta scheme can be employed to 
integrate the evolution equation (1) to update sΦ  and ζ at new time. 
 
3.2 Hybrid method 
Following Zhu et al. (2002) and Zhu, Liu & Yue (2006), we decompose the body-wake-
surface interaction into three coupled boundary-value problems. We write the total 
potential Φ  as a linear superposition of three parts, fwb φφφ ++=Φ , where bφ  
represents the contribution from the body, wφ  the contribution from the vorticity wake, 
and fφ the influence of the free surface.  For the body influence problem for bφ , we 
assume that wφ  and fφ  are given, and apply the no-flux boundary condition (2) to 
determine bφ . Similarly, we formulate the free-surface problem for fφ  as a Dirichlet 
problem by specifying the value of fφ  at the mean free surface (with fφ =Φ− bφ − wφ ). 
Finally, we model wφ  as the induced velocity potential of zero-thickness shear layers.  
These layers originate from the sharp trailing edges of the body. At each instant, the 
strength of the newly created potion of the layer is determined by the Kutta condition at 
the trailing edge, provided that bφ  and fφ  are known.  The rest of the layer is allowed to 
be advected downstream by the combined velocity field of bφ , fφ , and wφ . 
 
Boundary-value problem for bφ  
At any time t, if wφ  and fφ are given, bφ  is determined by implementing the boundary 
condition (2), which is rewritten as 
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)),,(( fwbb tz φφφ ∇−∇−⋅=∇⋅ xVnn .                                                                              (7) 
Upon invoking Green’s theorem, we have 
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for any ),,( zyx=r  on the foil surface ( bS∈r ), where G is a doubly-periodic Green 
function (see Newman 1992).  
 
We solve the boundary-value problem for bφ  by a constant panel method, in which the 
body surface bS  is discretized into bN  quadrilateral panels, bbj NjS ,...,1, = .  Over each 
panel, the body potential bφ  and its normal derivative (or, equivalently, the dipole 
strength bμ  and the source strength bσ ) are assumed to be constant.  After applying (8) 
at the centroid of each panel, we obtain a linear system of bN  equations for bN  
unknowns  
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where bkμ  and bkσ  are the values of  bμ  and bσ  on panel bkS , and 

( ) '' dsGB
bkS

jjk ∫∫ −= rr ,    ( ) '' dsGC
bkS

jjk ∫∫ −∇⋅= rrn ,                                                     (10) 

where jr  is the centroid of bjS .  The source strength bkσ  in (9) is known and is given by 
the boundary condition. After (9) is solved for the unknown dipole strength, the body 
influence potential bφ  and the associated velocity anywhere in the fluid are obtained. 
 
Boundary-value problem for fφ  
The free-surface influence potential fφ  is determined from a Dirichlet boundary-value 
problem with its value on the mean free surface specified. At any time t, the total 
potential on the mean free surface )( ,tx,y,0Φ  and the free surface elevation ),( tx,yζ are 
determined from time integration of the evolution equation (1). With bφ  and wφ  known, 
we have the Dirichlet condition on the mean free surface for fφ : 

fwbf Stttt ∈−−Φ= rrrrr ),,(),(),(),( φφφ .                                                               (11) 
The spectral method described in section 3.1 is employed to solve (11) for the free-
surface influence potential fφ . 
 
Determination of wφ  
The wake shed from the trailing edges of the body is modeled as infinitely thin shear 
layers, and is mathematically represented by a distribution of dipoles on the wake sheets.  
The instantaneous strength of the newly formed wake is determined by the Kutta 
condition, which specifies that the strength of dipole shedding at the trailing edge wμ  
equals to the difference of body influence potential bφ  between the upper and lower 
surfaces near this edge divided by π4 .  Once produced, the wake is carried downstream 
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by the fluid velocity and its strength is kept unchangeable due to the absence of 
dissipation.  At any point r  within the flow, the wake induced potential is given by  

∫∫ −⋅∇=
wS

ww dGt ')'('),( rrrnr μφ ,                                                                                    (12) 

where ws  is the instantaneous position of the wake sheet. The associated velocity field 
can be obtained by taking spatial derivative of (12).  
 
Time integration 
The coupled boundary-value problems for bφ , wφ  and fφ  need in principal to be solved 
simultaneously which usually requires an expensive iteration procedure.  In this study, we 
employ a simple approximate method to decouple the problem in the time domain.  At 
each time step, while solving the (Neumann) boundary-value problem for bφ , wφ  and fφ  
are considered to be known with their values given by those at the previous time step.  
The same approach is applied for the determination of wφ  and fφ .  This simplification 
introduces an )( tO Δ  error but is shown to provide a satisfactory convergence with 
respect to time step for practical applications (Zhu, Liu & Yue 2006). 
 
4. Results 
4.1 Free-surface signature of a submerged spheroid 
We first study the wave pattern above a spheroid (which is close in geometry to a 
submarine). As shown in Fig. 1, the spheroid has a half length of a=L/2, and a half width 
of b=c. The submergence, defined as the distance from the center of the spheroid to the 
mean free surface, is h. The spheroid is placed in a head sea with forward speed U, and 
the incident wave has wave length λ , wavenumber λπ /2=k , and amplitude A. The 
steepness of the incident wave is kA. 
 
In this case, the free-surface signature is composed of three contributions: the incident 
wave; the steady Kelvin 
waves associated with the 
steady forward motion of 
the body consisting of the 
transverse and diverging 
wave systems; and the 
unsteady wave pattern 
generated by the diffraction 
of the incident wave. The 
characteristics of the free 
surface pattern is thus 
determined by the forward 
speed, the body size, as 
well as the incident wave 
parameters. Some typical 
wave patterns are displayed in Fig. 2. We see that as the length of the body is large 
compared with the incoming waves ( 4/L=λ ) (Fig. 2a and 2b) , the radiated waves are 
confined with an envelope whose size is comparable with the body length. Through 

Fig. 1.  Sketch of a submerged spheroid in waves. 
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asymptotic analysis, it has been illustrated that this envelope follows a solitary shape 
(Mei & Naciri, 1991). The angle between the envelope and the forward speed 
U decreases as U  increases. With large forward speed, a narrow ‘V’-shape feature is 
created (Fig. 2b). This phenomenon, on the other hand, becomes less pronounced as the 
body size is reduced (Fig. 2c and 2d). 

 

 
(a) 

 
(b) 

 
 

(c) 
 

 
(d) 

Fig. 2. Free-surface signature above a near-surface spheroid in an ambient wave field. 
The four cases are (a) Froude number 050./ == gLUFr , incident wave length 

4/L=λ  (large body,  moderate speed); (b) 20.0=rF , 4/L=λ  (large body, large 
speed);  (c) 10.0=rF , L2=λ  (small body, small speed); (d) 200.=rF , L2=λ  (small 
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body, large speed). The wave fields shown are with (left) or without (right) incident wave 
components. Other parameters are: aspect ratio = c/a = 1/10, central submergence h = 
1.25 c, incident wave steepness = 0.15. 
 
4.2 Wave pattern generated by an oscillating foil 
Next we consider the wave pattern generated by a submerged foil undergoing translation 
and unsteady oscillations. The chord length of the foil is c, the span is s. Two types of foil 
and motion configurations are considered.  The first one is a heaving motion of a 
horizontal foil.  The second problem we consider is the swaying motion of a foil with its 
span perpendicular to the free surface. The amplitude of these oscillations are A.  
The more detailed description of this problem and (the results) can be found in Zhu, Liu 
& Yue (2006). 
 
Like the spheroid case, the free-surface signature of a translating and heaving foil also 
contains three components: the steady Kelvin wave pattern; the unsteady wave pattern 
generated by the oscillatory motion; and the waves generated by vortices in the wake.  
 
In the heaving foil case, the solution has a strong dependence on the unsteady 
parameter gU /ωτ ≡ , with large free-surface response observed near the critical 
value 250.≡= cττ . Fig. 3 shows combined features of the free surface due to forward 
speed and oscillation of the foil for different values of τ , plotted with and without the 
Kelvin wake component. At the subcritical value of 100.=τ  (Fig. 3a), the unsteady wave 
pattern appears much weaker than the Kelvin pattern.  At the critical value τ =0.25 (Fig. 
3b), the wave field is dominated by the unsteady waves, demonstrating a distinctive 
pattern different from the Kelvin wake. At the supercritical value of 500.=τ , the 
unsteady waves become less pronounced and the Kelvin-like wave field reappears (Fig. 
3c).  In addition, a sequence of ring-shaped ripples on the track due to the underlying 
vortex wake is shown. The shed wake, which has initially a periodic vorticity strength, 
evolves under self induction into a characteristic meandering sheet with vorticity 
concentrated near the peaks and troughs.  Eventually, the sheet curls up and evolves into 
a sequence of individual counter-rotating vortices.  When the mean hydrodynamic force 
on the foil is a thrust, the wake takes the form of the reverse Kármán vortex street, in 
which the vortices near the peaks of the sheet are counter-clockwise, while those near the 
troughs are clockwise. When the foil experiences (mean) drag force, the wake resembles 
the classical Kármán street in which the rotational directions of the vortices are reversed.  
In both cases, the wake contains two arrays of vortices, one of them close to the free 
surface and the other far below.  When the vortices in the upper row approach the free 
surface, they induce the characteristic sequence of ring-like wave features observed in 
Figure 3c. The distance between two neighboring rings is determine by the Strouhal 
number tS , and is expressed as τπ /2/2 2

rt cFSA = . Based on this estimation, this 
distance in Figure 3a, b, and c is, 40c, 16c, and 8c, respectively. It is clear that the vortex-
induced features in Figure 3a are out of the computational domain.  
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(a) 

 
(b) 

 
(c) 

Fig. 3. Free-surface waves generated by the heaving motion of a horizontal foil with 
aspect ratio 518005 ./,.,/ === chFcs r ,  and 20./ =cA  at (a) 100.=τ ; (b) 250.=τ ; 
and (c) 50.0=τ . The submergence h is defined to be the distance from the mean free 
surface to the mean position of the center of the foil. The wave fields shown are with 
(left) and without (right) steady Kelvin wake components. 
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Unlike the horizontal foil case, the problem of a vertical foil in sway motion is much less 
sensitive to τ . As shown in Fig.4, the unsteady waves are non-symmetrical with respect 
to the track of the foil.  As τ  increases, the wavenumber and amplitude of the unsteady 
waves increase accordingly, while the abrupt rise of the amplitude of the unsteady waves 
in the region near cττ =  is not observed. The vortex-induced waves appear as well and 
generally become stronger with larger values of τ . These vortex-induced waves appear 
on ring-like shapes.  Their locations correspond to the position of the underlying vortices 
in a Kármán (or reverse Kármán) vortex street and are therefore away from the centerline 
and exhibit the characteristic meandering pattern of the vortex street. The distance 
between two neighboring rings in the x direction is estimated to be τπ // 2

rt cFSA = , 
which is estimated to be 20c, 8c, and 4c for the cases in Figure 74, b, and c, respectively. 
 

 
(a) 

 
(b) 
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(c) 

Fig. 4. Free-surface waves generated by the heaving motion of a vertical foil with 
508005 ./,.,/ === cdFcs r , and 250./ =ch  at (a) 100.=τ , (b) 250.=τ , and (c) 

50.0=τ . The wave fields shown are with (left) or without (right) steady Kelvin wake 
components. The submergence h is defined to be the distance from the mean free surface 
to the top end of the foil. 

4.3 Free-surface signature of a moored underwater buoy 
We consider the nonlinear interaction problem of surface waves with a tethered near-
surface buoy, as shown in Fig. 5. Unlike most previous studies on the subject of the 
dynamics of tethered objects in waves which have been limited to the prediction of 
hydrodynamic loads on the structures and mooring systems, in the present study, our 
main interests are the mechanisms of generating short free-surface waves by the motion 
of moored near-surface objects which may be detectable by remote sensing. Our 
objective is to investigate mechanisms for nonlinear short surface wave generation in this 
complete coupled wave-buoy-cable dynamical system. The detailed investigation of this 
problem can be found in Zhu et al (1999). 
 
Systematic simulations show that beyond a small threshold value in the incident wave 
amplitude, the buoy performs chaotic motions, 
characterized by the snapping of the cable. The 
root mechanism of the chaotic response is the 
interplay between the nonlinear dynamics of the 
cable and the generation of surface waves, which 
provides a source of strong (radiation) damping. 
As a result of this interaction, the chaotic buoy 
motion switches between two competing modes 
of snapping response: one with larger average 
peak amplitude and lower characteristic 
frequency, and the other with smaller amplitude 
and higher frequency (see Fig. 6). The generated 
high-harmonic/short surface waves are greatly 
amplified once the chaotic motion sets in (Fig. 7), 
owing to the fact that the chaotic motion has a 

Fig.5. Sketch of a moored 
underwater buoy in waves. 
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broadband spectrum with significant amount of energy spread to high-frequency motions. 

 
(a)                                                           (b) 

Fig. 6. Response of the buoy to (a) small incident waves; (b) large incident waves. 
 

 
(a)                                                       (b) 

Fig.7. Spectral of the generated free-surface disturbances for the cases of (a) small 
incident wave; and (b) large incident wave. 
 
5. Conclusions 
We apply two related effective numerical algorithms, the high-order spectral (HOS) 
method and the hybrid method to illustrate the distinctive free-surface wave patterns 
generated by various underwater objects. For a spheroid in forward motion, the HOS 
method provides high-resolution description of the combined wave field. For a 
submerged foil undergoing forward motion and oscillation, our numerical model 
demonstrates a combined wave field of steady Kelvin waves, unsteady waves, and 
vorticity-generated waves. For a moored underwater buoy, our numerical investigation 
shows the occurrence of chaotic motion, and the corresponding amplified short wave 
generation which may be detectable via remote sensing. 
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